首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The next-nearest neighbor hopping interactions of π-electrons in quasi-one-dimensional organic polymer ferromagnets are considered. Within the mean-field theory and allowing for full lattice relaxation, a set of self-consistent equations is established to study the system. It is found that with increasing of the next-nearest neighbor interaction a charge-density-wave (CDW) transition will happen. At the CDW state, a strong charge density distribution along the main chain will appear, and the spin density-wave (SDW) along the main chian will be tuned by the CDW. Consequently the ferromagnetic state, in which all the spins of the unpaired electrons at side freeradicals are arranged parallely, will be no longer the stable ground state of the system.  相似文献   

2.
Based on a theoretical model proposed for quasi-one-dimensional organic polymer fer-romagnets, the next-nearest neighbor hopping interactions of sr-electrons are considered. Allowing for full lattice relaxation, a set of self-consistent equations is established to study the system. The spin-density-wave (SDW) and the possible ferromagnetic ground state of the system are investigated in detail. It is found that the next-nearest neighbor hopping in-teractions will make the SDW stronger and consequently make the ferromagnetic state more stable as compared with the nonmagnetic reference state.  相似文献   

3.
Based on a theoretical model proposed for interchain-coupled quasi-one-dimensional organic magnetic polymer, the effects of the interchain couplings and electron–electron interactions on the charge density wave (CDW) and spin density wave (SDW) that exist in the system are studied. It is found that the amplitude of the SDW along the main chain will decrease with increasing of the oscillatory term of the interchain couplings in the system, which is unfavorable to the ferromagnetic ground state of the system. Moreover, with different interchain couplings, there will all exist a critical value of the inter-site electron–electron Coulomb repulsion, and at this value, the system will experience a transformation from strong SDW state to strong CDW one, which will weaken the mediating function of the antiferromagnetic SDW along the main chain. As a result, the ferromagnetic correlation intensity between the spins of the side radicals will be affected and consequently the stability of the ferromagnetic state in the system will be weakened.  相似文献   

4.
The next-nearest-neighbor hopping interactions of ρ-electrons in quasi-onedimensional organic polymer ferromagnet are considered by Peierls-Hubbard model, and a set of self-consistent equations are established to optimize the system. The competition between the SDW and CDW states, which is determined by the interplay between the electron-electron correlation and the next-nearest-neighbor hopping interaction, is studied. At the CDW state,the SDW along the main chain will be tuned by the CDW. Consequently the ferromagnetic state, in which all the spins of the unpaired electrons at side freeradicals are arranged parallelly,will be no longer a stable ground state of the system.  相似文献   

5.
Ramazanov  M. K.  Murtazaev  A. K. 《JETP Letters》2019,109(9):589-593

Phase transitions in the antiferromagnetic Heisenberg model on a cubic lattice with intralayer next-nearest neighbor interactions are studied using the replica Monte Carlo algorithm. The magnitude of next-nearest neighbor interactions varies in the range of 0.0 ≤ r ≤ 1.0. The characteristics of the phase transitions are analyzed by the histogram and Binder cumulant techniques. The phase diagram relating the transition temperature and the magnitude of next-nearest neighbor interactions is constructed. It is shown that a second order phase transition occurs in the r range under study. In this model, it is found that the intralayer next-nearest neighbor interactions do not change the order of the phase transition.

  相似文献   

6.
We examine the electronic and magnetic structures of iron telluride KFe2Te2 using first-principle calculations. We demonstrate that the ground state of this compound is in bicollinear antiferromagnetic order with Fe local moments (~ 2.6 μB) that are ferromagnetically aligned along a diagonal direction and antiferromagnetically aligned along the other diagonal in the Fe-Fe square lattice, similar to the alignment discovered in the parent compound of superconductor α-FeTe. This bicollinear antiferromagnetic order results from the interplay among the nearest, next-nearest, and next-nextnearest neighbor exchange interactions, which are mediated by Te 5p orbitals. This finding may aid our understanding of the interplay between magnetism and superconductivity in the family of iron-based materials.  相似文献   

7.
The next-nearest neighbor correlation function for isotropic triangular Ising system has been evaluated. This function is used to determine the shifts in the critical temperatures of ferromagnetic and antiferromagnetic triangular lattice after introduction of a small next-nearest neighbor interaction in zero field.  相似文献   

8.
We investigate envelope solitary waves on square lattices with two degrees of freedom and nonlinear nearest and next-nearest neighbor interactions. We consider solitary waves which are localized in the direction of their motion and periodically modulated along the perpendicular direction. In the quasi-monochromatic approximation and low-amplitude limit a system of two coupled nonlinear Schr?dinger equations (CNLS) is obtained for the envelopes of the longitudinal and transversal displacements. For the case of bright envelope solitary waves the solvability condition is discussed, also with respect to the modulation. The stability of two special solution classes (type-I and type-II) of the CNLS equations is tested by molecular dynamics simulations. The shape of type-I solitary waves does not change during propagation, whereas the width of type-II excitations oscillates in time. Received: 4 December 1997 / Revised: 6 June 1998 / Accepted: 7 July 1998  相似文献   

9.
根据紧束缚模型,利用格林函数的方法,将次近邻跃迁考虑在内,研究了扶手椅型石墨烯纳米带的输运性质.通过数值计算,给出了不同尺寸和不同次近邻跃迁能下系统的能量-电导和电流-电压特征曲线.结果表明,次近邻跃迁对扶手椅型石墨烯纳米带的输运性质有显著的影响.它破坏了电导共振峰关于能量的对称分布,增强了系统的导电性,减小了电子导电偏压阈值,加速了系统输运性能由半导体向导体转变. 次近邻跃迁能和石墨烯纳米带的尺寸越大,这种影响越明显  相似文献   

10.
11.
The asymmetry in the phase diagram of the H/Ru(001) system is studied by assuming a lattice gas model for the chemisorbed hydrogen and using the cluster variation method. Ground state analysis of the ordered structures shows that the effective pair interaction for the next-nearest neighbors has to be repulsive. We also found that the order-disorder transition temperatures and hence the phase diagram are very sensitive to v3, the ratio of the effective next-nearest to nearest neighbor interactions of H adatoms. The asymmetry in the phase diagram, which cannot be accounted for by the adsorbate relaxation model by Persson [Surf. Sci. 258 (1991) 451], is attributed to the coverage dependence of the effective pair interactions. By assuming a simple piecewise linear dependence of v3 on the chemical potential, we constructed an asymmetric phase diagram which is in excellent agreement with the experimental data. The model studied can be applied to the H/Pd(111) system directly and can be easily generalized for other close-packed metal surfaces.  相似文献   

12.
G. Remenyi 《Physics letters. A》2009,373(46):4278-4281
The charge density wave (CDW) dynamics of the quasi-one-dimensional conductor K0.30MoO3 shows two different regimes depending on the temperature: a strongly damped CDW motion above ∼50 K and CDW motion with almost no damping below ∼50 K. In a search for a characterization of this CDW behaviour, we performed thermal expansion measurements on K0.30MoO3 single crystals in the temperature range 4-250 K. In addition to the anomaly observed at the Peierls transition at 180 K along the [102] direction, an anomaly is observed at ∼50 K along the [−201] and [102] directions. The results are discussed in relation with the change in the CDW rigidity at ∼50 K.  相似文献   

13.
An unexpected feature common to 2H transition metal dichalcogenides ( 2H TMDs) is revealed with a first-principles Wannier function analysis of the electronic structure of the prototype 2H TaSe2: The low-energy Ta "5d(z2)" bands governing the physics of a charge-density wave (CDW) is dominated by hopping between next-nearest neighbors. With this motivation we develop a minimal effective model for the CDW formation, in which the unusual form of the hopping leads to an approximate decoupling of the three sublattices. In the CDW phase one sublattice remains undistorted, leaving the bands associated with it ungapped everywhere in the Fermi surface, resolving the long-standing puzzle of the coexistence of gapless excitations and commensurate CDW in the 2H TMDs.  相似文献   

14.
We investigate the ground-state magnetic long-range order of quasi-one-dimensional quantum Heisenberg antiferromagnets for spin quantum numbers s = 1/2 and s = 1. We use the coupled cluster method to calculate the sublattice magnetization and its dependence on the inter-chain coupling J. We find that for the unfrustrated spin-1/2 system, an infinitesimal inter-chain coupling is sufficient to stabilize magnetic long-range order, in agreement with results obtained by other methods. For s = 1, we find that a finite inter-chain coupling is necessary to stabilize magnetic long-range order. Furthermore, we consider a quasi one-dimensional spin-1/2 system, where a frustrating next-nearest neighbor in-chain coupling is included. We find that for stronger frustration as well, a finite inter-chain coupling is necessary to have magnetic long-range order in the ground state, and that the strength of the inter-chain coupling necessary to establish magnetic long-range order is related to the size of the spin gap of the isolated chain.  相似文献   

15.
A spin model of quasi-one-dimensional LiCu2O2 compound with ground state of ellipsoidal helical structure has been adopted. The helical axis is along the diagonal of CuO4 squares. By taking into account the interchain coupling and exchange anisotropy, the exotic magnetic properties and ferroelectricity induced by spiral spin order have been studied by performing Monte Carlo simulation. The simulation results qualitatively reproduce the main characters of ferroelectric and magnetic behaviors of LiCu2O2 compound and confirm the low-temperature noncollinear spiral ordering. Furthermore, by performing the calculations of spin structure factor, we systematically investigate the effects of different exchange couplings on the lower-temperature magnetic transition, and find that the spiral spin order depends not only on the ratio of nearest and next-nearest neighbor inchain spin coupling but also strongly on the exchange anisotropy.  相似文献   

16.
We present a variable temperature scanning tunneling microscopy and spectroscopy study of the Si(553)-Au atomic chain reconstruction. This quasi-one-dimensional system undergoes at least two charge density wave (CDW) transitions, which can be attributed to electronic instabilities in the fractionally filled 1D bands of the high-symmetry phase. Upon cooling, Si(553)-Au first undergoes a single-band Peierls distortion, resulting in period doubling along the chains. This Peierls state is ultimately overcome by a competing x3 CDW, which is accompanied by a x2 periodicity in between the chains. These locked-in periodicities indicate small charge transfer between the nearly 1/2-filled and 1/4-filled bands. The presence and the mobility of atomic-scale dislocations in the x3 CDW state indicates the possibility of manipulating phase solitons carrying a (spin, charge) of (1/2, +/- e/3) or (0, +/-2e/3).  相似文献   

17.
We have studied submonolayer adsorption, at room temperature, of iodine on the (111) faces of silver and copper, using LEED and XPS. In both systems the √3 × √3 LEED pattern appears at ~0.2 monolayer (ML) coverage; no other superlattice pattern was observed. The I 4d52 core electron binding energy in both cases decreases by ~0.15 eV between very dilute coverage and 0.33 ML. The leveling-off of the binding energy for I/Ag(111) for coverages >0.2 ML is shown to be a unique experimental manifestation of an indirect, substrate-mediated adatom-adatom interaction, an attraction of several meV between next-nearest neighbor iodine atoms. The more nearly linear decrease in the I binding energy on Cu(111) is shown to imply a significantly weaker next-nearest neighbor interaction on this surface. The appearance of the √3 × √3 LEED pattern at low coverages on Cu is shown to be consistent with short-range order produced merely by a size effect, that is, by nearest neighbor exclusion. These conclusions are reached with the help of Monte Carlo calculations of a triangular lattice gas.  相似文献   

18.
Phase transitions in the three-dimensional antiferromagnetic Heisenberg model on a layered triangular lattice with the next-nearest neighbor interactions have been studied by the histogram Monte Carlo method. Phase transitions in this model have been studied in the range of the next-nearest neighbor interactions from 0.0 to 1.0. The first-order phase transition has been revealed in the considered interval in the studied model.  相似文献   

19.
We use the self-consistent harmonic approximation (SCHA) to study the two-dimensional classical Heisenberg anisotropic (easy-plane) ferromagnetic model including nearest- and next-nearest neighbor exchange interactions. For temperatures much lower than the Kosterlitz-Thouless phase transition temperature T KT, spin waves must be the most relevant excitations in the system and the SCHA must account for its behavior. However, for temperatures near T KT, we should expect vortex pairs to be quite important. The effect of these vortex excitations on the phase transition temperature is included in our theory as a renormalization of the exchange interactions. Then, combining the SCHA theory to the renormalization effect due to vortex pairs, we calculate the dependence of T KT as a function of the easy-plane anisotropies and exchange interactions. Received 3 April 2001 and Received in final form 20 September 2001  相似文献   

20.
Resistivity, thermoelectric power and magnetotransport measurements have been performed on single crystals of the quasi two-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m for m =5 with alternate structure, between 0.4 K and 500 K, in magnetic fields of up to 36 T. These compounds show one charge density instability (CDW) at 160 K and a possible second one at 30 K. Large positive magnetoresistance in the CDW state is observed. The anisotropic Shubnikov-de Haas and de Haas-van Alphen oscillations detected at low temperatures are attributed to the existence of small electron and hole pockets left by the CDW gap openings. Angular dependent magnetoresistance oscillations (AMRO) have been found at temperatures below 30 K. The results are discussed in terms of a weakly corrugated cylindrical Fermi surface. They are shown to be consistent with a change of the Fermi surface below 30 K. Received 23 November 1999 and Received in final form 23 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号