首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
沟槽面湍流边界层结构实验研究   总被引:14,自引:1,他引:14  
王晋军  兰世隆  陈光 《力学学报》2000,32(5):621-626
应用激光测速技术和氢气泡流动显示技术对沟槽面湍流边界层特性及近壁区拟序结构特征进行了精细的测量和观察。实验结果表明:与光滑面湍流边界层相比,沟槽面端流边界层的黏性底层厚度、过渡层厚度及流速分布对数公式中的积分常数C均有所增大,说明采用的沟槽面具有减阻特性。此外,无量纲低速带条间距明显减小,最多减小20%,说明无量钢低速带条平均间距的缩短与湍流减阻密切联系。  相似文献   

2.
Flow field analysis of a turbulent boundary layer over a riblet surface   总被引:9,自引:0,他引:9  
The near-wall flow structures of a turbulent boundary layer over a riblet surface with semi-circular grooves were investigated experimentally for the cases of drag decreasing (s +=25.2) and drag increasing (s +=40.6). One thousand instantaneous velocity fields over riblets were measured using the velocity field measurement technique and compared with those above a smooth flat plate. The field of view was 6.75 × 6.75 mm2 in physical dimension, containing two grooves. Those instantaneous velocity fields were ensemble averaged to get turbulent statistics including turbulent intensities and turbulent kinetic energy. To see the global flow structure qualitatively, flow visualization was also carried out using the synchronized smoke-wire technique under the same experimental conditions. For the case of drag decreasing (s +=25.2), most of the streamwise vortices stay above the riblets, interacting with the riblet tips frequently. The riblet tips impede the spanwise movement of the streamwise vortices and induce secondary vortices. The normalized rms velocity fluctuations and turbulent kinetic energy are small near the riblet surface, compared with those over a smooth flat plate. Inside the riblet valleys, these are sufficiently small that the increased wetted surface area of the riblets can be compensated. In addition, in the outer region (y + > 30), these values are almost equal to or slightly smaller than those for the smooth plate. For the case of drag increasing (s +=40.6), however, most of the streamwise vortices stay inside the riblet valleys and contact directly with the riblet surface. The high-speed down-wash flow penetrating into the riblet valley interacts actively with the wetted riblet surface and increases the skin friction. The rms velocity fluctuations and turbulent kinetic energy have larger values compared with those over a smooth flat plate. Received: 24 March 1999/Accepted: 10 March 2000  相似文献   

3.
采用高时间分辨率粒子图像测速技术对沟槽壁面平板湍流边界层速度矢量场的时间序列及其统计量进行了实验测量,讨论了在同一来流速度下沟槽壁面对平均速度剖面﹑雷诺切应力及湍流强度的影响. 用流向速度分量的多尺度空间局部平均结构函数辨识壁湍流多尺度相干结构,用条件采样和相位平均技术提取壁湍流多尺度相干结构喷射和扫掠事件的脉动速度、展向涡量的二维空间拓扑形态. 结果表明,与同材料光滑壁面对比,沟槽壁面实现了10.73%的摩阻减小量;沟槽壁面湍流边界层湍流强度及雷诺切应力皆比光滑平板湍流边界层对应统计量小,说明沟槽壁面有效降低了湍流边界层内流体的脉动. 通过比较壁湍流相干结构猝发事件各脉动速度分量与展向涡量的空间分布特征,肯定了沟槽壁面的减阻效果,发现沟槽壁面通过抑制相干结构猝发事件实现减阻.  相似文献   

4.
高频吹气扰动影响近壁区拟序结构统计特性的实验研究   总被引:1,自引:0,他引:1  
利用恒温热线风速仪测量了零压力梯度平板上施加由合成射流激发的狭缝周期吹气扰动前后不同流向位置湍流边界层的速度信号, 展开高频吹气扰动影响近壁区湍流结构的统计特性研究. 研究结果表明:高频周期吹气扰动在狭缝下游产生明显的减阻效果. 扰动强度在湍流边界层内的发展沿流向呈衰减趋势, 其与湍流结构的相互作用也相应衰减. 然而, 因高频扰动产生运动的展向涡结构与猝发引起的结构变化尺度相当, 直接影响了近壁区拟序结构产生与发展的统计, 从而使得猝发检测方法VITA 表现出与低频或定常吹气减阻机理相异的现象.   相似文献   

5.
An experiment was carried out in a low-speed wind tunnel to study the turbulence structure of the boundary layer over a two-dimensional square cavity on a flat plate. The main purpose of this investigation is to examine the way a square cavity modifies the near-wall structure of the turbulent boundary layer leading to a possible drag reduction overd-type roughness. The experimental results on pressure coefficient and friction coefficient indicated a small reduction in total drag in this configuration. This seems to be due to the stable vortex flow observed within the cavity which absorbs and reorganizes the incoming turbulence in the cavity, thereby modifying the near-wall turbulence structure of the boundary layer. The resultant turbulence structure was very similar to that over drag-reducing riblets surface.  相似文献   

6.
An experiment was carried out in a low-speed wind tunnel to study the turbulence structure of the boundary layer over a two-dimensional square cavity on a flat plate. The main purpose of this investigation is to examine the way a square cavity modifies the near-wall structure of the turbulent boundary layer leading to a possible drag reduction overd-type roughness. The experimental results on pressure coefficient and friction coefficient indicated a small reduction in total drag in this configuration. This seems to be due to the stable vortex flow observed within the cavity which absorbs and reorganizes the incoming turbulence in the cavity, thereby modifying the near-wall turbulence structure of the boundary layer. The resultant turbulence structure was very similar to that over drag-reducing riblets surface.  相似文献   

7.
针对航行器提高航程和航速的需要,开展脊状表面湍流边界层减阻的实验和数值仿真研究。在航行器模型的外表面加工具有特定形状、尺寸的脊状结构,导致湍流边界层的流动稳定性增强,壁面摩擦阻力降低。在风洞中对具有光滑表面和脊状表面的航行器模型在不同风速和攻角下进行阻力测试,得到其减阻特性曲线。实验结果表明,具有横向脊状表面的航行器模型在一定来流速度范围内具有很好的减阻效果,实验获得的最大减阻量为23.5%。数值仿真结果则发现,在脊状结构内形成了稳定的"二次涡",边界层内湍动能和湍流猝发强度降低,很好地揭示了减阻机理。  相似文献   

8.
用平均速度剖面法测量壁湍流摩擦阻力   总被引:10,自引:1,他引:9  
樊星  姜楠 《力学与实践》2005,27(1):28-30
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法.  相似文献   

9.
The interaction between longitudinal vortices and flat plate boundary layer has been studied numerically for both laminar and turbulent flow situations. The vortices are assumed to be placed in an otherwise two-dimensional boundary layer flow. The flow is assumed to be incompressible and steady. Considering the fact that the velocity, vorticity and temperature gradients in the transverse directions are much larger than the longitudinal (streamwise) gradients for these flows, the original Navier Stokes equations are parabolized in the streamwise direction. A simple model, based on Boussinesq hypothesis, is used for turbulent flow. The discretized equations are then solved step by step in the streamwise direction, using an iterative procedure at each station. Numerical solutions have been obtained for different parameters, such as the Reynolds number, the circulation and the initial position of the vortices. The computed flow patterns and the skin friction coefficient and Stanton number are found to be qualitatively consistent with available experimental results. It is shown that the interaction between the vortices and the boundary layer may severely disturb the boundary layer flow field and thus considerably increase the local skin friction and heat transfer rate on surface of an aircraft.  相似文献   

10.
The possibility of reducing turbulent friction with the help of large-eddy-breakup devices (LEBUs) and riblets is studied experimentally. The tests were conducted in a low-turbulence wind tunnel on a flat plate for 2·106 Re 7·106. The local friction coefficient was measured using internal strain-gauge balances, and the total drag was estimated by the momentum-transfer method. It is shown that a combination of LEBUs and riblets makes it possible to reduce the total turbulent friction drag of a flat plate 1800 mm long by 16%. The effects of the length of a ribbed surface on the efficiency of friction reduction and of LEBUs and riblets on the structure of a turbulent boundary layer are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 39–46, May–June, 1995.  相似文献   

11.
采用粒子图像测速技术(particle image velocimetry,PIV)在平板湍流边界层内开展实验研究,对比颗粒相及单相液体的平均速度剖面、湍流强度、雷诺应力等湍流统计量,分析颗粒在湍流边界层中的行为.利用空间多尺度局部平均涡量的概念提取壁湍流发卡涡展向涡头(顺向涡)并统计其数量规律,得到不同法向位置处顺向涡周围流向脉动速度及流线的空间拓扑结构,比较分析顺向涡发展程度及周围的湍流相干结构.结果发现:与清水工况相比,颗粒相湍流边界层的缓冲层变薄、对数律区下移,湍流强度得到增强,雷诺应力在对数律区有所增大;颗粒的流向脉动速度在展向涡周围的分布与清水工况不同,颗粒能够被流体展向涡周围的猝发过程有效传递;颗粒相的顺向涡涡核较大,且随着法向位置的升高逐渐发展完整,涡和条带在流向上拉伸得更长;同时发现在两种工况下,顺向涡的左下方始终存在一个逆向涡,颗粒相逆向涡的形成弱于单相流体;两种工况下的顺向涡数量均随着法向位置的升高而减少,最后逐渐趋于稳定.   相似文献   

12.
Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect.In the present study,the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer(TBL) is investigated.This is done by means of tomographic particle image velocimetry(TPIV) measurements in channel fl ws over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190.The turbulent fl ws over drag-reducing riblets are verifie by a planar time-resolved particle image velocimetry(TRPIV) system initially,and then the TPIV measurements are performed.Two-dimensional(2D) experimental results with a dragreduction rate of around 4.81% are clearly visible over triangle riblets with a peak-to-peak spacing s+of 14,indicating from the drag-reducing performance that the buffer layer within the TBL has thickened;the logarithmic law region has shifted upward and the Reynolds shear stress decreased.A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudesof the spanwise vorticity when ejection(Q2) and sweep(Q4) events occur at the near wall,having the greatest effect on Q4 events in particular.The so-called quadrupole statistical model for coherent structures in the whole TBL is verified Meanwhile,their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent fl w over riblets are changed,suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events(Q2 and Q4),thereby reducing the skin friction drag.  相似文献   

13.
Experimental measurements address the effects on a turbulent boundary layer of wall roughness on a flat plate and a ramp that produces a separation bubble over the ramp trailing edge. A fully rough flow condition is achieved on the upstream flat plate. The main effect of the wall roughness on the outer layer turbulence on a flat plate is to change the friction velocity. The separation region is substantially larger for the rough-wall case. The rough-wall boundary layer turbulence is less sensitive to the onset of an adverse pressure gradient over the ramp, producing substantially smaller Reynolds stress peaks in upstream flat-plate, wall-unit coordinates.  相似文献   

14.
To analyze the fundamental physical mechanism which determines the damping effect of a riblet surface on three-dimensional transition several numerical simulations of spatial transition in a flat plate zero-pressure-gradient boundary layer above a riblet wall are performed in this study. Two types of forced transition scenarios are investigated. The first type of transition is defined by K-type transition induced by a dominant two-dimensional Tollmien–Schlichting (TS) wave and a weak spanwise disturbance. The second type of transition is purely excited by two oblique waves. By a qualitative analysis of the occurring maximum wall-normal and spanwise velocity components and the Fourier modes of the disturbances the two-dimensional TS waves are found to be amplified by riblets, whereas three-dimensional structures, i.e., Λ-, hairpin, and streamwisely aligned vortices, are damped. At oblique transition the breakdown to turbulence is delayed by the riblets compared to transition on a clean surface. The investigation of the near wall flow structure reveals secondary flows induced by the riblets and reduced wall normal ejections as well as a reduced downwash.  相似文献   

15.
Flow over convergent and divergent wall riblets   总被引:1,自引:0,他引:1  
Fast swimming sharks have small riblets on their skin, which are assumed to improve the swimming performance of the fish. Fluid dynamic experiments in water as well as in air confirm this assumption. With riblet surfaces as compared to smooth surfaces, drag reductions up to about 10% were measured. The overall riblet pattern on sharks shows parallel riblets directed from head to tail, but besides this overall pattern fast swimming sharks have also small areas with converging riblets and others with diverging riblets. In the present study the velocity field over convergent and divergent riblet patterns is investigated by hot-wire measurements in turbulent pipe flow. Significant changes in the near wall velocity field were found.  相似文献   

16.
One of the main aims of this work is to show to what extent drag reduction in a turbulent boundary layer can be ascribed to a purely viscous effect. A numerical and experimental study is performed in a laminar boundary layer over triangular riblets. The 2-D parabolic equations of motion are integrated using an x marching method and the discretised system is solved with the MSI algorithm. The influence of the riblet geometrical parameters and of the number of grid points is studied. Measurements are carried out in a water tunnel with forward scatter and backscatter laser-Doppler velocimetry extending within the riblets. The longitudinal velocity component measurements and computations are practically identical. Numerical results presented herein show that a slight drag reduction is obtained for s/h=1.2. It appears that, as far as friction is concerned, the wetted area is not the surface to be considered. Thus, the boundary layer over riblets would behave like a boundary layer on an equivalent smooth plate located beneath the crest plane. The numerical study in terms of the riblet height h shows best results are for h tending to zero, with the ratio s/h being equal to 1.2.  相似文献   

17.
In water flows with velocities of up to 9 m/s the friction drag of a body of revolution in axial flow was investigated for dependence on the body surface structure. This was done for different types of riblet film fixed on the surface with the riblet direction aligned with the flow. The lateral spacing between the triangular shaped riblets varied between 0.033 mm and 0.152 mm. In all cases the riblet spacing was equal to the riblet height. For comparison a smooth reference film was used.Depending on the Reynolds number and the non-dimensional riblet spacings +, a turbulent drag reduction of up to 9% could be achieved with riblets in comparison with the flow over a smooth surface.In the region of transition to turbulent flow and with non-dimensional riblet spacings ofs +10–15 drag reductions of up to 13% were obtained. It is therefore conjectured, that in addition to hampering the near wall momentum exchange, the riblets can delay the development of initial turbulent structures in time and space.  相似文献   

18.
The effect of converging–diverging riblet-type surface roughness (riblets arranged in a ‘herringbone’ pattern) are investigated experimentally in a zero pressure gradient turbulent boundary layer. For this initial parametric investigation three different parameters of the surface roughness are analysed in detail; the converging–diverging riblet yaw angle α, the streamwise fetch or development length over the rough surface Fx and the viscous-scaled riblet height h+. It is observed that this highly directional surface roughness pattern induces a large-scale spanwise periodicity onto the boundary layer, resulting in a pronounced spanwise modification of the boundary layer thickness. Hot-wire measurements reveal that above the diverging region, the local mean velocity increases while the turbulent intensity decreases, resulting in a thinner overall boundary layer thickness in these locations. The opposite situation occurs over the converging region, where the local mean velocity is decreased and the turbulent intensity increases, producing a locally thicker boundary layer. Increasing the converging–diverging angle or the viscous-scaled riblet height results in stronger spanwise perturbations. For the strongest convergent–divergent angle, the spanwise variation of the boundary layer thickness between the diverging and converging region is almost a factor of two. Such a large variation is remarkable considering that the riblet height is only 1% of the unperturbed boundary layer thickness. Increasing the fetch seems to cause the perturbations to grow further from the surface, while the overall strength of the induced high and low speed regions remain relatively unaltered. Further analysis of the pre-multiplied energy spectra suggests that the surface roughness has modified or redistributed the largest scale energetic structures.  相似文献   

19.
Turbulent coherent structures near a rod-roughened wall are scrutinized by analyzing instantaneous flow fields obtained from direct numerical simulations (DNSs) of a turbulent boundary layer (TBL). The roughness elements used are periodically arranged two-dimensional spanwise rods, and the roughness height is k/δ = 0.05 where δ is the boundary layer thickness. The Reynolds number based on the momentum thickness is varied in the range Reθ = 300–1400. The effect of surface roughness is examined by comparing the characteristics of the TBLs over smooth and rough walls. Although introduction of roughness elements onto the smooth wall affects the Reynolds stresses throughout the entire boundary layer when scaled by the friction velocity, the roughness has little effect on the vorticity fluctuations in the outer layer. Pressure-strain tensors of the transport equation for the Reynolds stresses and quadrant analysis disclose that the redistribution of turbulent kinetic energy of the rough wall is similar to that of the smooth wall, and that the roughness has little effect on the relative contributions of ejection and sweep motions in the outer layer. To elucidate the modifications of the near-wall vortical structure induced by surface roughness, we used two-point correlations, joint weighted probability density function, and linear stochastic estimation. Finally, we demonstrate the existence of coherent structures in the instantaneous flow field over the rod-roughened surface.  相似文献   

20.
苏锋  张涛  姜楠 《实验力学》2006,21(3):271-277
通过在固壁表面的平板湍流边界层沿流向平行放置若干通电加热的金属细丝,在平板表面形成沿展向周期性分布的温度场,利用该温度场引起的空气热对流,在湍流边界层近壁区域产生一组沿湍流边界层展向周期分布的流向涡结构。对壁湍流小尺度结构标度律统计特性的研究表明,金属丝加热后形成的规则流向涡结构将壁湍流各种尺度湍涡结构不规则的脉动有序地组织起来,增强了湍流小尺度结构的层次结构相似性,减小了壁湍流中小尺度结构的间歇性和奇异性,抑制了壁湍流中奇异的湍涡结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号