首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry–Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.  相似文献   

2.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.  相似文献   

3.
In this paper, two and three-dimensional clustering models are developed to characterize the effect of nano-particle clustering on toughening of nanocomposite ceramics. It is found that crack pinning toughens the nano-composite ceramics because a higher stress intensity factor is needed for crack to propagate around or to pull-out the nano-particle. The nano-particle along the grain boundary steers the crack into the matrix grain due to the strong cohesion between the nanoparticle and the matrix. Since the fracture resistance of the grain boundary is lower than that of the grain lattice, the higher the probability of transgranular fracture induced by nano-particles, the tougher is the nano-composite. However, both crack pinning and transgranular fracture are affected by nano-particle clustering. Nanoparticle clustering, which increases with increasing volume fraction of nano-particles, leads to reduction of both the strength and toughness of the nano-composite ceramics. The larger the size of the clustered particle, and the more defects it contains, the easier it is for the crack to pass through the clustered particle, which means that the nano-particle clustering can reduce toughening induced by crack pinning and transgranular fracture. The theoretical prediction, based on the combination of the three mechanisms of nano-particles, is in agreement with the experimental data. The project supported by the National Natural Science Foundation of China (19891180) and the Research Grants Council of the HKSAR, China(HKU7081/00E)  相似文献   

4.
A laser-based technique is presented that can be used to measure the instantaneous velocity field of the continuous phase in sprays and aerosols. In contrast to most well established laser-based velocity measurement techniques, this method is independent of particle seeding and Mie scattering. Instead of that it is based on gaseous flow tracers and laser-induced fluorescence (LIF). Inhomogeneous tracer gas distributions, which are created by an incomplete, turbulent mixing process, are exploited for flow tracing. The velocity field can be measured close to the droplets, because frequency-shifted LIF is separated from Mie scattering by optical filters. Validation tests and results from a water spray in air are given. Accuracy and spatial resolution are discussed in detail. Received: 26 April 1999/Accepted: 16 October 1999  相似文献   

5.
An application of a new flow measurement technique is described which allows for the non-intrusive simultaneous measurement of flow velocity, density, and viscosity. The viscosity information can be used to derive the flow field temperature. The combination of the three measured variables and the perfect-gas law then leads to an estimate of the flow field thermodynamic pressure. Thus, the instantaneous state of a flow field can be completely described. Three-state anemometry (3SA), a derivative of particle image velocimetry (PIV), which uses a combination of three monodisperse sizes of styrene seeding particles is proposed. A marker seeding is chosen to follow the flow as closely as possible, while intermediate and large seeding populations provide two supplementary velocity fields, which are also dependent on fluid density and viscosity. A simplified particle motion equation, aimed at turbomachinery applications, is then solved over the whole field to provide both density and viscosity data. The three velocity fields can be separated in a number of ways. The simplest and that proposed in this paper is to dye the different populations and view the region of interest through interferometric filters. The two critical aspects needed to enable the implementation of such a technique are a suitable selection of the diameters of the particle populations, and the separation of the velocity fields. There has been extensive work on the seeding particle behaviour which allows an estimate of the suitable particle diameters to be made. A technique is described in this paper to allow the separation of particles in a range of micrometer sized velocity fields through fluorescence (separation through intensity also being possible). Some preliminary results by direct numerical simulation (DNS) of a 3SA image are also presented. The particle sizes chosen were 1 μm and 5 μm, tested on the near-wake flow past a cylinder to investigate viscosity only, assuming uniform flow density. The accuracy of the technique, derived from simulations of swirling flows, is estimated as 0.5% RMS for velocity, 2% RMS for the density and viscosity, and 4% RMS for the temperature estimate. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
This paper discusses the radiative transfer effects of an axisymmetric gas-particles jet into a cylindrical pipe. The medium is gray and it participates to radiation by emission, absorption and scattering. The two-phase flow problem is solved numerically by the finite volume method. We investigate the radiative transfer through a sensitivity analysis which considers the effects of the particle radiative properties and the particle number density on the temperature field and on the radiative heat fluxes of the two-phase flow domain. Analysis of the temperature profile in the cylinder, without and then with particle radiation effects, shows a decrease in the medium temperatures and thus an important role of the radiative transfer. These results also show that the presence of scattering makes the medium temperature more uniform. Finally, analysis of the particle number density, through the variation of the injection velocity, shows that a decrease in the injection velocity decreases the temperatures of the gas and particles and rapidly equilibrates the gas and particle temperatures.  相似文献   

7.
高超声速溢流冷却实验研究   总被引:2,自引:1,他引:1  
高超声速溢流冷却是一种新型的飞行器热防护方法,基本思想为:在高热流区布置溢流孔,控制冷却液以溢流方式流出,之后通过飞行器表面摩阻作用展布为液膜,形成热缓冲层以降低飞行器表面热流. 目前,溢流冷却技术还处于探索阶段,实现工程应用前还需开展大量的实验验证和机理研究工作. 本文首次开展溢流冷却的实验研究工作,采用热流测量、液膜厚度测量及液膜流动特性观测技术,搭建了完善的溢流冷却风洞实验平台,对溢流冷却热防护性能和高超声速条件下液膜流动规律进行了初步研究. 研究表明:(1) 高超声速流场中通过溢流能够在飞行器表面形成液膜并有效隔离外部高温气流,可降低飞行器表面热流率;(2) 楔面上的液膜前缘流动是一个逐渐减速的过程,增加冷却液流量液膜厚度变化不明显,但液膜前缘运动速度增大;(3) 液膜层存在表面波,在时间和空间方向发生演化,导致液膜厚度的微弱扰动;(4) 液膜层存在横向展宽现象,即液膜层宽度大于溢流缝宽度. 原因是液膜层与流场边界层条件不匹配,存在压力梯度,迫使冷却液向低压区流动,从而展宽液膜层,并且流量越高,横向展宽现象越明显.   相似文献   

8.
Glow discharge is introduced as an artificial disturbance to investigate the evolution of first-and second-mode instabilities in a hypersonic flat plate boundary layer.Experiments are conducted in a Mach 6.5 quiet wind tunnel using Rayleigh scattering visualization and particle image velocimetry(PIV). Detailed analysis of the experimental observations is provided. It is found that the artificially introduced 17 kHz disturbance,which belongs to the first-mode frequency band, can effectively enhance first-mode waves.Moreover, it can enhance second-mode waves even more intensely. Possible mechanisms to explain this phenomenon are discussed.  相似文献   

9.
Oxy-fuel flames for direct combustion hydrolysis of fused silica (DQ) are characterized, using non- intrusive optical measurement techniques only. Flow, temperature, concentrations, development of silica nano-particles in the flame, and surface temperature of the glass in the flame are measured. The setup used for characterization of particle distribution via Rayleigh scattering as well as mandatory improvements of the Raman/Rayleigh technique for temperature and concentration measurements in oxy-fuel flames have been developed in the framework of this study and are presented. The measurement techniques herein demonstrated are not only capable of describing these special extremely hot flames, but are broadly applicable in oxy-fuel flames as well as in chemical vapor deposition (CVD) processes. The presented data evidently shows that if the special character of oxy-fuel flames is taken into account, some of the results drawn from earlier investigations into CVD, concerning particle growth, flame stability, and particle deposition efficiency, are transferable into DQ. From the extensive data given, connections between different information are detected and help to reduce required measurements for further investigation and point to simple techniques that might be used for online process monitoring, at least during research and development of similar flames. Received: 18 December 2000 / Accepted: 14 June 2001  相似文献   

10.
This study discusses the development and application of planar laser-induced fluorescence of nitric oxide (NO PLIF) to measure velocities in an axisymmetric hypersonic near-wake flow field around a model planetary-entry vehicle configuration. Shapes and positions of NO spectral lines at every location in the flow are determined over several successive shock tunnel runs. The lines experience Doppler shifts proportional to the local flow velocity component in the direction of the fluorescence-generating laser. A Gaussian line shape function is then fitted to the acquired wavelength-dependent fluorescence measurements, the line center of which is correlated to the time-averaged velocity at each pixel location. The flow field is probed successively by a laser in two orthogonal directions, which yields the velocity magnitude and direction everywhere in the illuminated plane. The accuracy of the measurement technique is discussed, and various strategies to characterize systematic errors are presented. The variation of random uncertainties in different regions of the flow field provides information about the local steadiness of the flow. To the authors’ knowledge, the measurements represent the first two-component velocity map of a hypersonic near-wake flow.  相似文献   

11.
 Rayleigh scattering of ultra-violet laser light is applied as a diagnostic tool to record gas density distributions in a supersonic nozzle flow. The output beam of a pulsed ArF excimer laser (λ=193.4 nm) is focussed into a thin light sheet radially intersecting a dry air flow emanating from a circular nozzle. An intensified CCD camera is used to record the Rayleigh scattered light in a direction perpendicular to the light sheet. Since the Rayleigh scattering intensity is directly proportional to the local gas density, this results in two-dimensional gas density distribution maps of radial slices through the flow. Images of the flow density are presented for stagnation pressures between 0.2 and 0.7 MPa (0.1 MPa ≡1 bar), showing the transition from subsonic to supersonic flow and, at higher pressures, the formation of a Mach disk. Density maps can be recorded with single laser pulses, effectively freezing the flow structure on a 20 ns time scale. The diamond pattern, characteristic for underexpanded supersonic nozzle flows, is quantitatively monitored, with the experimental results being in reasonable agreement with predictions from a simplified theoretical model. Received: 25 September 1996/Accepted: 19 May 1997  相似文献   

12.
为了解具有密度极值流体瑞利-贝纳德对流特有现象和规律,利用有限容积法对长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流的分岔特性进行了三维数值模拟,得到了不同条件下的对流结构型态及其分岔序列,分析了密度极值特性、瑞利数、热边界条件以及宽深比对瑞利-贝纳德对流的影响. 结果表明:具有密度极值冷水瑞利-贝纳德对流系统较常规流体更加稳定,且流动型态及其分岔序列更加复杂;相同瑞利数下多种流型可以稳定共存,各流型在相互转变中存在滞后现象;随着宽深比的增加,流动更易失稳,对流传热能力增强;系统在导热侧壁时比绝热侧壁更加稳定,对流传热能力有所减弱;基于计算结果,采用线性回归方法,得到了热壁传热关联式.  相似文献   

13.
A new method of flow tagging based on the vibrational excitation of oxygen is applied to both supersonic and high-speed subsonic air flows to generate instantaneous velocity profiles and turbulence statistics across the free shear layer. By simultaneously tagging two lines, both transverse and streamwise velocity correlations are found. Rayleigh scattering can also be imaged, so this flow diagnostic technique has the capability of instantaneously recording density cross sections and velocity profiles. A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, Oct. 17–19, 1988  相似文献   

14.
Laminar natural convection of Cu-water nano-fluid between two horizontal concentric cylinders with radial fins attached to the inner cylinder is studied numerically. The inner and outer cylinders are maintained at constant temperature. The governing equations in the polar two-dimensional space with the respective boundary conditions are solved using the finite volume method. The hybrid-scheme is used to discretize the convection terms. In order to couple the velocity field and the pressure in the momentum equations, the well known semi-implicit method for pressure linked equation reformed algorithm is adopted. Using the developed code, a parametric study is undertaken, and the effects of the Rayleigh number, Number of fins, length of the fins and the volume fraction of nano-particles on the fluid flow and heat transfer inside the annuli are investigated. In this study, two cases with different number of fins are considered. It is observed from the results that the average Nusselt number increases with increasing both the Rayleigh number and the volume fraction of the nano-particles. Moreover, the average Nusselt number decreases by increasing the fins’ length and the number of fins. Heat transfer rate increases by increasing the fins’ length at all Rayleigh numbers, but it increases by increasing the number of fins at high Rayleigh numbers.  相似文献   

15.
The adsorption of nano-particles on bubble surface is discussed for saturated boiling on thin wire of nano-particle suspensions. Owing to the decrease of surface tension for suspensions, the nano-particles tend to adsorb on the bubble surface to decrease the Gibbs free energy for stability, and meanwhile the velocity of nano-particles would be smaller than that of bubble growth. The long-range van der Waals force existing between “water particles” and nano-particles is considered the attractive force between the nano-particles and the bubble surface. Thus, the nano-particles would attach on the bubble surface if the particle-surface distance is smaller than its critical value. The distribution of nano-particles on the bubble surface and in the adjacent region is also investigated.  相似文献   

16.
Dependences of the drag and lift coefficients of a magnetized sphere in a hypersonic rarefied plasma flow on the angle between the plasma flow velocity and the self-magnetic field induction vector of the body are obtained in a wide range of the ratio of the magnetic pressure to the plasma flow pressure. It is shown that changing the orientation of the magnetic field vector of the body and the incoming flow velocity can be used to control the dynamic interaction in the plasma–body system, namely, to decelerate and accelerate the magnetized sphere in a rarefied hypersonic plasma flow.  相似文献   

17.
A novel method is developed for in-line measurements of particle size, velocity and concentration in a dilute, particulate two-phase flow based on trajectory image processing. The measurement system consists of a common industrial CCD camera, an inexpensive LED light and a telecentric lens. In this work, the image pre-processing steps include stitching, illumination correction, binarization, denoising, and the elimination of unreal and defocused particles. A top-hat transformation is found to be very effective for the binarization of images with non-uniform background illumination. Particle trajectories measured within a certain exposure time are used to directly obtain particle size and velocity. The particle concentration is calculated by using the statistics of recognized particles within the field of view. We validate our method by analyzing experiments in a gas-droplet cyclone separator. This in-line image processing method can significantly reduce the measurement cost and avoid the data inversion process involved in the light scattering method.  相似文献   

18.
A novel method is developed for in-line measurements of particle size, velocity and concentration in a dilute, particulate two-phase flow based on trajectory image processing. The measurement system consists of a common industrial CCD camera, an inexpensive LED light and a telecentric lens. In this work, the image pre-processing steps include stitching, illumination correction, binarization, denoising, and the elimination of unreal and defocused particles. A top-hat transformation is found to be very effective for the binarization of images with non-uniform background illumination. Particle trajectories measured within a certain exposure time are used to directly obtain particle size and velocity. The particle concentration is calculated by using the statistics of recognized particles within the field of view. We validate our method by analyzing experiments in a gas-droplet cyclone separator. This in-line image processing method can significantly reduce the measurement cost and avoid the data inversion process involved in the light scattering method.  相似文献   

19.
页岩中的孔隙直径通常为纳米量级,基于连续流的达西定律已不能描述纳米级孔隙内的气体流动规律,一般采用附加滑移边界条件的Navier-Stokes方程对其进行描述. 由此可导出与压力相关的渗透率公式(称为"视渗透率"),并用来修正达西定律.因而,渗透率修正方法研究成为页岩气流动研究的热点之一.首先,基于Hagen-Poiseuille 流推导出一般形式二阶滑移模型下的速度分布和流量公式,并推导出相应的渗透率修正公式.该渗透率修正公式基本能将现有的滑移速度模型统一表达为对渗透率的修正. 基于一般形式的渗透率修正公式,重点研究了Maxwell, Hsia, Beskok与Ng 滑移模型速度分布渗透率修正系数、及其对井底压力的影响;提出了基于Ng 滑移速度模型的渗透率修正公式. 基于页岩实际储层温压系统及孔隙分布,计算了Kn 范围及储层条件下页岩气的流动形态,表明页岩气流动存在滑移流、过渡流与分子自由流. 而Ng 模型能描述Kn<88 的滑移流、过渡流、自由分子流的流量规律,因此可以用于描述页岩实际储层中页岩气的流动特征. 计算表明,随着Kn 的增加,不同滑移模型下的渗透率修正系数差异增大.Maxwell与Hsia模型适用于滑移流与过渡流早期,Beskok与Ng 模型可描述自由分子流下的流动规律,但二者在虚拟的孔径均为10nm页岩中,井底压力的差别开始显现;在虚拟的孔径均为1nm页岩中,井底压力的差别开始明显.   相似文献   

20.
We present the application of wavefront sensing to particle image velocimetry for three-component (3C), three-dimensional (3D) flow measurement from a single view. The technique is based upon measuring the wavefront scattered by a tracer particle and from that wavefront the 3D tracer location can be determined. Hence, from a temporally resolved sequence of 3D particle locations the velocity vector field is obtained. Two approaches to capture the data required to measure the wavefronts are described: multi-planar imaging using a distorted diffraction grating and an anamorphic technique. Both techniques are optically efficient, robust and compatible with coherent and incoherent scattering from flow tracers. The depth (range) resolution and repeatability have been quantified experimentally using a single mode fiber source representing a tracer particle. The anamorphic approach is shown to have the greatest measurement range and hence was selected for the first proof of principle experiments using this technique for 3D particle imaging velocimetry (PIV) on a sparsely seeded gas phase flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号