共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
本文研究了固定效应空间自回归分位数模型的变量选择问题.通过惩罚压缩相关参数,达到了同时识别空间效应、估计未知参数和选择解释变量的目的.此外,给出了变量选择的实现算法并证明了惩罚估计量的大样本性质.数值模拟和实例分析均表明了所提方法的优良表现. 相似文献
4.
对于高维空间数据,利用半参数空间自回归进行建模,模型中会同时存在内生性、非线性、变量过多等问题。本文研究半参数空间分位回归模型,提出了新的估计程序:首先利用样条基函数,对模型中未知平滑函数进行逼近,解决非线性问题;然后运用特征向量空间滤波,将空间滞后因子转化为空间代理变量的线性组合,有效解决了内生性问题;利用再中心化影响函数,进行无条件分位回归建模,能够刻画不同分位水平下变量之间的关系;最后引入自适应Lasso惩罚,对高维线性部分进行变量选择,得到系数的稀疏估计,有效增强了模型的可解释性。数值模拟中对参数作不同的设置,展现了本文提出方法的有效性。最后,利用半参数空间分位回归模型分析了住房销售价格数据集。 相似文献
5.
6.
7.
本文提出复合最小化平均分位数损失估计方法 (composite minimizing average check loss estimation,CMACLE)用于实现部分线性单指标模型(partial linear single-index models,PLSIM)的复合分位数回归(composite quantile regression,CQR).首先基于高维核函数构造参数部分的复合分位数回归意义下的相合估计,在此相合估计的基础上,通过采用指标核函数进一步得到参数和非参数函数的可达最优收敛速度的估计,并建立所得估计的渐近正态性,比较PLSIM的CQR估计和最小平均方差估计(MAVE)的相对渐近效率.进一步地,本文提出CQR框架下PLSIM的变量选择方法,证明所提变量选择方法的oracle性质.随机模拟和实例分析验证了所提方法在有限样本时的表现,证实了所提方法的优良性. 相似文献
8.
多数基于线性混合效应模型的变量选择方法分阶段对固定效应和随机效应进行选择,方法繁琐、易产生模型偏差,且大部分非参数和半参数的线性混合效应模型只涉及非参数部分的光滑度或者固定效应的选择,并未涉及非参变量或随机效应的选择。本文用B样条函数逼近非参数函数部分,从而把半参数线性混合效应模型转化为带逼近误差的线性混合效应模型。对随机效应的协方差矩阵采用改进的乔里斯基分解并重新参数化线性混合效应模型,接着对该模型的极大似然函数施加集群ALASSO惩罚和ALASSO惩罚两类惩罚,该法能实现非参数变量、固定效应和随机效应的联合变量选择,基于该法得出的估计量也满足相合性、稀疏性和Oracle性质。文章最后做了个数值模拟,模拟结果表明,本文提出的估计方法在变量选择的准确性、参数估计的精度两个方面均表现较好。 相似文献
9.
10.
在回归分析中,当因变量存在双侧截断时,已有的统计方法会使得回归模型的系数估计与变量选择产生偏差.本文提出一种适用于双侧截断回归模型的系数估计与变量选择方法,且该方法允许回归模型中自变量的个数随着样本量增大并趋于无穷而趋于无穷.该方法的主要思想是,提出一种Mann-Whitney型的损失函数来进行纠偏,随后加入自适应最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)惩罚项来进行变量选择.本文同时设计一种迭代算法来实现损失函数的优化;且证明了所提出估计量的相合性与渐近正态性,还给出所提出变量选择方法的神谕性(oracle property).本文通过随机模拟展示所提出方法在有限样本量下的表现,并使用所提出方法分析一个天文学领域的实际数据集. 相似文献
11.
12.
分位数变系数模型是一种稳健的非参数建模方法.使用变系数模型分析数据时,一个自然的问题是如何同时选择重要变量和从重要变量中识别常数效应变量.本文基于分位数方法研究具有稳健和有效性的估计和变量选择程序.利用局部光滑和自适应组变量选择方法,并对分位数损失函数施加双惩罚,我们获得了惩罚估计.通过BIC准则合适地选择调节参数,提出的变量选择方法具有oracle理论性质,并通过模拟研究和脂肪实例数据分析来说明新方法的有用性.数值结果表明,在不需要知道关于变量和误差分布的任何信息前提下,本文提出的方法能够识别不重要变量同时能区分出常数效应变量. 相似文献
13.
In this paper, we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data. By constructing a penalized auxiliary vector ingeniously, we propose an empirical likelihood based variable selection procedure, and show that it is consistent and satisfies the sparsity. The simulation studies show that the proposed variable selection method is workable. 相似文献
14.
为避免模型出现过拟合,将自适应LASSO变量选择方法引入二元选择分位回归模型,利用贝叶斯方法构建Gibbs抽样算法并在抽样中设置不影响预测结果的约束条件‖β‖=1以提高抽样值的稳定性.通过数值模拟,表明改进的模型有更为良好的参数估计效率、变量选择功能和分类能力. 相似文献
15.
??Considering a parameter estimation and variable selection problem in logistic regression, we propose Smooth LASSO and Spline LASSO. When the variables is continuous, using Smooth LASSO can select local constant coefficient in each group. However, in some case, the coefficient might be different and change smoothly. Using Spline Lasso to estimate parameter is more appropriate. In this article, we prove the reliability of the model by theory. Finally using coordinate
descent algorithm to solve the model. Simulations show that the model works very effectively both in feature selection and prediction accuracy. 相似文献
16.
Considering a parameter estimation and variable selection problem in logistic regression, we propose Smooth LASSO and Spline LASSO. When the variables is continuous, using Smooth LASSO can select local constant coefficient in each group. However, in some case, the coefficient might be different and change smoothly. Using Spline Lasso to estimate parameter is more appropriate. In this article, we prove the reliability of the model by theory. Finally using coordinate
descent algorithm to solve the model. Simulations show that the model works very effectively both in feature selection and prediction accuracy. 相似文献
17.
Il Do Ha Jianxin Pan Seungyoung Oh Youngjo Lee 《Journal of computational and graphical statistics》2013,22(4):1044-1060
Variable selection methods using a penalized likelihood have been widely studied in various statistical models. However, in semiparametric frailty models, these methods have been relatively less studied because the marginal likelihood function involves analytically intractable integrals, particularly when modeling multicomponent or correlated frailties. In this article, we propose a simple but unified procedure via a penalized h-likelihood (HL) for variable selection of fixed effects in a general class of semiparametric frailty models, in which random effects may be shared, nested, or correlated. We consider three penalty functions (least absolute shrinkage and selection operator [LASSO], smoothly clipped absolute deviation [SCAD], and HL) in our variable selection procedure. We show that the proposed method can be easily implemented via a slight modification to existing HL estimation approaches. Simulation studies also show that the procedure using the SCAD or HL penalty performs well. The usefulness of the new method is illustrated using three practical datasets too. Supplementary materials for the article are available online. 相似文献
18.
生存数据经过未知的单调变换后等于协变量的线性函数加上随机误差, 随机误差的分布函数已知或是带未知参数的已知函数\bd 本文先给出未知单调变换的一个相合估计, 再对删失数据做变换, 在此基础上给出了协变量系数的最小二乘估计, 并讨论它的大样本性质. 相似文献