首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present an optical study of excited states in single CdTe quantum dot (QDs). Using micro-photoluminescence excitation spectroscopy, absorption up to two confined excited levels have been observed in some dots. Power-dependent micro-photoluminescence is then used to study the occupation of excited states. The emission pattern is characteristic of the increase of the exciton number in the QD (shell-filling). A clear identification of the different multi-exciton complexes has been obtained in a highly symmetric dot. The evolution of the different multi-exciton intensities can then be reproduced by solving the rate equations for multi-exciton state occupancy and the fit by this simple model provides an estimate of the radiative lifetime of the different multi-exciton complexes.  相似文献   

2.
We show that the presence of InAs dots embedded in a host GaAs quantum well containing a two-dimensional electron gas dramatically modifies the cyclotron resonance (CR). Far-infrared CR measurements show two modes with different dispersions with applied magnetic field B. The lower-frequency mode, with a sub-linear dependence on B, is identified as a CR at low B, developing into a skipping orbit around the dot perimeters at higher B. This has not been previously observed for a system with randomly distributed scatterers. The higher-frequency mode is identified as a magnetoplasmon localised by the confining effect of the arrays of repulsive potentials due to the dots in the well.  相似文献   

3.
Lattice-type mismatched heteroepitaxy is demonstrated as a novel concept for the fabrication of almost ideal, highly luminescent nanocrystal quantum dots that are coherently embedded in a single-crystalline matrix. In this approach, the formation of quantum dots is induced by transformation of a metastable epitaxial 2D quantum well into an array of isolated nanocrystals with-highly symmetric shape. This process is driven by the lattice-type mismatch between the constituent materials and the resulting miscibility gap. The investigated PbTe/CdTe heterosystem has a model character because it combines two compounds with different cubic lattice types but almost identical lattice constants. The obtained epitaxial nanocrystals exhibit outstanding properties such as a well-defined symmetric shape, the absence of strain, intermixing and a wetting layer, which is in contrast to the conventional Stranski–Krastanow quantum dots. The small-rhomboedric-cubo-octahedron PbTe/CdTe nanocrystals on GaAs substrates display intense room temperature mid-infrared luminescence as is crucial for device applications. Ab initio density functional theory is used to clarify the interface structure, indicating that the covalent and ionic bonding character of CdTe and PbTe is maintained across the interface.  相似文献   

4.
The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski–Krastanow (SK) or of the Frank–Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.  相似文献   

5.
The magnetic state of a single magnetic ion (Mn2+) embedded in an individual quantum dot is optically probed using micro-spectroscopy. The fine structure of a confined exciton in the exchange field of a single Mn2+ ion (S=) is analyzed in detail. The exciton–Mn2+ exchange interaction shifts the energy of the exciton depending on the Mn2+ spin component and six emission lines are observed at zero magnetic field. The emission spectra of individual quantum dots containing a single magnetic Mn atom differ strongly from dot to dot. The differences are explained by the influence of the system geometry, specifically the in-plane asymmetry of the quantum dot and the position of the Mn atom. Depending on both these parameters, one has different characteristic emission features which either reveal or hide the spin state of the magnetic atom. The observed behavior in both zero field and under magnetic field can be explained quantitatively by the interplay between the exciton–Mn2+ exchange interaction (dependent on the Mn position) and the anisotropic part of the electron–hole exchange interaction (related to the asymmetry of the quantum dot).  相似文献   

6.
Nanocrystals (NCs) of II–VI semiconductors of few nanometers average size, called quantum dots (QDs), are now intensely investigated as radiation detectors. Besides the expected quantum confinement and influence of surface states, our electron paramagnetic resonance investigations of cZnS QDs doped with Mn2+ ions, correlated with structural data, underline that other properties should be also taken into consideration in developing the II–VI semiconductor QDs as radiation detectors. Thus, the preferential localization of Mn2+ in the core of the cubic ZnS QDs at substitutional Zn2+ cation sites next to a stacking lattice defect is expected to lead, besides changes in the impurity energy levels, to specific aggregation properties. An outer shell of different composition can also influence the structural properties of the QDs core with effects on the optical properties as well.  相似文献   

7.
Freshly prepared CdS-quantum dots (QDs) in DMF (clear pale solution) when loaded in polymethylmethacrylate (PMMA) lead to excellent optical properties. The tuning of the absorption and emission wavelengths via experimentally control parameters is considered novel and significant. The absorption band for CdS was observed at about 370 nm in polymeric matrix. The blue, green and orange light emissions from such composite solution were tuned and stabilized by simply varying the concentration of CdS, cadmium and sulphur in the final product. Photoluminescence (PL) measurement with 2% CdS loading showed band-edge emissions from the composite with only about 20-25 nm Stokes shift in emission wavelength. Observation of such optical properties indicated that the composite has narrow particle size distribution and particle diameter may well be below 10 nm. X-ray diffraction (XRD) patterns of the film with higher loading of CdS showed broad pattern for hexagonal CdS. Thermo-gravimetric analysis (TGA) of CdS/PMMA composite film revealed that it has better thermal stability than PMMA alone. Transmission electron microscopy (TEM) showed agglomerated tiny dots in nano-meter regime.  相似文献   

8.
We investigated the effect of GaNAs strain-compensating layers (SCLs) on the properties of InAs self-assembled quantum dots (QDs) grown on GaAs (0 0 1) substrates. The GaNAs material can be used as SCL thereby minimizing the net strain, and thus is advantageous for multi-stacking of InAs QDs structures and achieving long wavelength emission. The emission wavelength of InAs QDs can be tuned by changing the nitrogen (N) composition in GaNAs SCLs due to both effects of strain compensation and lowering of potential barrier height. A photoluminescence emission at 77 K was clearly observed for sample with GaN0.024As0.976 SCL. Further, we observed an improvement of optical properties of InAs QDs by replacing the more popular GaAs embedding layers with GaNAs SCLs, which is a result of decreasing non-radiative defects owing to minimizing the total net strain.  相似文献   

9.
CdSe quantum dots (QDs) prepared using an aqueous sodium selenosulphite and N,N′-dimethylformamide (DMF) in commercial polymethylmethacrylate (PMMA) showed excellent optical properties. Tuning of the absorption and emission wavelengths by varying the selenium concentration with respect to cadmium is studied. As-prepared CdSe quantum dots showed absorption band at 405 nm (3.06 eV) associated with the formation of ‘early-stage’ CdSe nano-particles along with weak absorption at 480–90 nm due to continuous growth of the particles. The blue-green and yellow-green light emissions were observed from as-prepared solutions. Photoluminescence (PL) measurement showed band-edge emissions at around 430 nm for small clusters but a more stable emission at 544 nm for the 1:1 CdSe sample. X-ray diffraction (XRD) pattern of the CdSe/PMMA powder with Cd/Se ratio of 1:1 showed broad pattern for cubic CdSe. Transmission electron microscopy (TEM) showed cube like de-shaped spherical dots in the region of about 5 nm.  相似文献   

10.
Optical characterization of single quantum dots (QDs) by means of micro-photoluminescence (μPL) will be reviewed. Both QDs formed in the Stranski–Krastanov mode as well as dots in the apex of pyramidal structures will be presented. For InGaAs/GaAs dots, several excitonic features with different charge states will be demonstrated. By varying the magnitude of an external electric or magnetic field and/or the temperature, it has been demonstrated that the transportation of carriers is affected and accordingly the charge state of a single QD can be tuned. In addition, we have shown that the charge state of the QD can be controlled also by pure optical means, i.e. by altering the photo excitation conditions. Based on the experience of the developed InAs/GaAs QD system, similar methods have been applied on the InGaN/GaN QD system.  相似文献   

11.
Direct and indirect excitons in coupled quantum wells and in coupled quantum dots are studied. We consider excitons with two-dimensional, quasi-two-dimensional and three-dimensional carriers. Problems were investigated for a wide range of characteristic parameters—confining to potential steepness, distances between quantum wells or dots, effective width of wells and magnetic fields. The mutual influence of the controlling parameters of the problem on exciton properties is analyzed. Energy and wave function spectra were calculated and dispersion law and effective masses were obtained.  相似文献   

12.
A resonance behaviour of the far-infrared absorption probability at a frequency N1/4 is predicted for clusters of N electron–hole pairs (2N110) confined in disk-shaped quantum dots. For radially symmetric dots, the absorption is dominated by a giant dipole resonance, which accounts for more than 98% of the energy-weighted photoabsorption sum rule.  相似文献   

13.
We present a photoluminescence (PL) study of Ge quantum dots embedded in Si. Two different types of recombination processes related to the Ge quantum dots are observed in temperature-dependent PL measurements. The Ge dot-related luminescence peak near 0.80 eV is ascribed to the spatially indirect recombination in the type-II band lineup, while a high-energy peak near 0.85 eV has its origin in the spatially direct recombination. A transition from the spatially indirect to the spatially direct recombination is observed as the temperature is increased. The PL dependence of the excitation power shows an upshift of the Ge quantum dot emission energy with increasing excitation power density. The blueshift is ascribed to band bending at the type-II Si/Ge interface at high carrier densities. Comparison is made with results derived from measurements on uncapped samples. For these uncapped samples, no energy shifts due to excitation power or temperatures are observed in contrast to the capped samples.  相似文献   

14.
We study single-electron-transistor (SET) operation of the quantum dot (QD) in a strong magnetic field under weak illumination of far-infrared (FIR) radiation, which causes cyclotron resonance (CR) excitation inside the QD. We find that the SET conductance resonance is exceedingly sensitive to the FIR: It switches on (off) upon the excitation of just one electron to a higher Landau level inside the QD, whereby enabling us to detect individual events of FIR-photon (hν 6 meV) absorption.  相似文献   

15.
We review far-infrared experiments on quantum wires and dots. In particular, we show that with tailored deviations from a parabolic external lateral confinement potential one can break Kohn’s theorem. This allows a detailed investigation of the internal relative motion in quantum dots and wires and the study of electron–electron interaction effects, for example, the formation of compressible and incompressible states in quantum dots and antidots.  相似文献   

16.
We report on a field-dependent photoluminescence (PL) emission rate for the transitions between band states in modulation-doped CdTe/Cd1−xMgxTe single quantum wells in the integer quantum Hall region. The recombination time observed for the magneto-PL spectra varies in concomitance with the integer quantum Hall plateaus. Furthermore, different PL decay times were observed for the two circular polarizations, i.e. for the transitions between the Zeeman split subbands of the Landau levels. We analyzed the data in comparison with the experimentally determined spin polarization of the conduction electrons and the Zeeman splitting of the valence band. Furthermore, we discuss the relevance of the spin polarization of the conduction electrons, the electron–hole exchange interaction and the spin-flip processes of the hole states for the PL decay time.  相似文献   

17.
We show how the atomistic pseudopotential many-body theory of InGaAs/GaAs addresses some important effects, including (i) the fine-structure splittings (originating from interband spin exchange), (ii) the optical spectra of charged quantum dots and (iii) the degree of entanglement in a quantum dot molecule.  相似文献   

18.
The coarsening of phosphorus-mediated Ge quantum dots (QDs) on Si(0 0 1) during in-situ annealing at 550 °C is studied. In-situ annealing makes the as-grown sample morphology be remarkably changed: the larger dots are formed and the dot density is greatly reduced. The results of chemical etching and Raman spectra reveal that the incorporation of Ge atoms which originate from the diminishing dots, rather than substrate Si atom incorporation is responsible for the dot coarsening at the incipient stage of in-situ annealing. Besides, Raman spectra suggest that the larger dots formed during in-situ annealing are dislocated, which was confirmed by cross-sectional high-resolution electron microscopy observation. Through the generation of dislocations, the strain in the dots is relaxed by about 50%.  相似文献   

19.
Interband absorption and luminescence of quasi-two-dimensional, circularly symmetric, Ne-electron quantum dots are studied at high magnetic fields, 8B60 T, and low temperatures, T2 K. In the Ne=0 and 1 dots, the initial and final states of such processes are fixed, and thus the dependence on B of peak intensities is monotonic. For larger systems, ground state rearrangements with varying magnetic field lead to substantial modifications of the absorption and luminescence spectra. Collective effects are seen in the Ne=2 and 3 dots at “filling fractions” and .  相似文献   

20.
We study theoretically the time development of electronic relaxation in quantum dots. We consider the process of relaxation of the state with an electron prepared at the beginning of relaxation in the electronic ground state. We obtain a fast (in picoseconds) increase of electronic population in the excited state. Also, we consider the process of relaxation of an electron from an excited state in the dot. Here we obtain an incomplete depopulation of the electron from the excited state. We compare these results to experiments in which a fast decrease of luminescence is reported during the first period of relaxation after resonant excitation of the ground state. We estimate numerically the role of electron–LO–phonon (Fröhlich's coupling) mechanism in these processes. We show that this effect may be attributed to the influence of multiple scattering of quantum dot electrons on LO phonons. A single-electron two-energy-level quantum dot model is used to demonstrate this effect in an isolated semiconductor quantum dot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号