首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The turbulent asymptotic suction boundary layer is studied using a one-dimensional turbulence (ODT) model. ODT is a fully resolved, unsteady stochastic simulation technique. While flow properties reside on a one-dimensional domain, turbulent advection is represented using mapping events whose occurrences are governed by a random process. Due to its reduced spatial dimensionality, ODT achieves major cost reductions compared to three-dimensional (3D) simulations. A comparison to recent direct numerical simulation (DNS) data at moderate Reynolds number (Re = u / v0 = 333, where u and v0 are the free stream and suction velocity, respectively) suggests that the ODT model is capable of reproducing several velocity statistics, i.e. mean velocity and turbulent kinetic energy budgets, while peak turbulent stresses are under-estimated by ODT. Variation of the Reynolds number in the range Re ∈ [333,400,500,1000] shows that ODT can reproduce various trends observed as a result of increased suction in turbulent asymptotic suction boundary layers, i.e. the reduction of Reynolds stresses and enhanced skin friction. While up to Re = 500 our results can be directly compared to recent LES data, the simulation at Re = 1000 is currently not feasible through full 3D simulations, hence ODT may assist the design of future DNS or LES simulations at larger Reynolds numbers.  相似文献   

3.
    
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.  相似文献   

4.
    
The output from a direct numerical simulation (DNS) of turbulent channel flow at Reτ ≈ 1000 is used to construct a publicly and Web services accessible, spatio-temporal database for this flow. The simulated channel has a size of 8πh × 2h × 3πh, where h is the channel half-height. Data are stored at 2048 × 512 × 1536 spatial grid points for a total of 4000 time samples every 5 time steps of the DNS. These cover an entire channel flow-through time, i.e. the time it takes to traverse the entire channel length 8πh at the mean velocity of the bulk flow. Users can access the database through an interface that is based on the Web services model and perform numerical experiments on the slightly over 100 terabytes (TB) DNS data on their remote platforms, such as laptops or local desktops. Additional technical details about the pressure calculation, database interpolation, and differentiation tools are provided in several appendices. As a sample application of the channel flow database, we use it to conduct an a-priori test of a recently introduced integral wall model for large eddy simulation of wall-bounded turbulent flow. The results are compared with those of the equilibrium wall model, showing the strengths of the integral wall model as compared to the equilibrium model.  相似文献   

5.
    
The diagnostic scaling concept, introduced for the streamwise turbulence intensity in wall-bounded turbulent flows (Alfredsson, Segalini and Örlü, Phys. Fluids 2011;23:041702), is here extended and generalised not only for the higher even-order central statistical moments, but also for the odd moments and thereby the probability density distribution of the streamwise velocity fluctuations. Turbulent boundary layer data up to a friction Reynolds number of 60,000 are employed and demonstrate the feasibility of the diagnostic scaling for the data throughout the logarithmic and wake regions. A comparison with the generalised logarithmic law for even-order moments by Meneveau and Marusic (J. Fluid Mech. 2013;719:R1) based on the attached-eddy hypothesis, is reported. The diagnostic plot provides an apparent Reynolds-number-independent scaling of the data, and is exploited to reveal the functional dependencies of the constants needed in the attached-eddy-based model. In particular, the invariance of the lowest order diagnostic scaling poses an intriguing incompatibility with the asymptotic constancy of the Townsend–Perry constant.  相似文献   

6.
An appraisal is made of several subgrid scale (SGS) viscous/scalar dissipation closures via a priori analysis of direct numerical simulation data in a temporally evolving compressible mixing layer. The effects of the filter width, the compressibility level and the Schmidt number are studied for several models. Based on the scaling of SGS kinetic energy, a new formulation for SGS viscous dissipation is proposed. This yields the best overall prediction of the SGS viscous dissipation within the inertial subrange. An SGS scalar dissipation model based on the proportionality of the turbulent time scale with the scalar mixing time scale also performs the best for the filter widths in the inertial subrange. Two dynamic methods are implemented for the determination of the model coefficients. The one based on the global equilibrium of dissipation and production is shown to be more satisfactory than the conventional dynamic model.  相似文献   

7.
利用非结构化网格上的有限体积法对三维湍流进行了数值研究,提出了不用求解单元顶点处变量值的二阶混合差分格式,既避免了复杂耗时的单元顶点处变量值的计算,又避免了普通差分格式在非结构化网格上易于引起网格界面方向相关性问题。最后利用非结构化网格计算程序,数值求解了一台离心风机内叶轮及无叶扩压器通道内三维相对定常湍流,计算结果与实验值的比较表明速度的计算值与实验值吻合较好。  相似文献   

8.
本文用谱方法对三维槽道不可压湍流反应流动进行了直接模拟,用直接模拟数据对大涡模拟亚网格质量流和燃烧模型进行了检验,结果发现,引入壁面阻尼修正的模型与精确值的符合比较好.  相似文献   

9.
Direct numerical simulations of turbulent channel flows are performed with opposition control at Reτ = 180 and 1000. The drag reduction rate at the higher Reynolds number is reduced by 25% compared with that at the lower Reynolds number. In order to investigate the reason for the degradation of the control effectiveness, we examine the response of Reynolds stresses and coherent structures in both the outer and inner regions to the control and the role that large-scale motions play therein. In the outer region, the Reynolds stresses at different length scales are reduced at the same rate as the drag reduction rate, and conditionally averaged large-scale motions with spanwise scale larger than half channel width are still large-scale low-speed streaks flanked by a pair of large-scale counter-rotating streamwise vortices but with reduced velocity amplitudes. In the inner region, the effectiveness of the control in suppressing the turbulence deteriorates at the higher Reynolds number. In response to the superimposition effect of large-scale motions, the contribution to near-wall wall-parallel velocity fluctuations from large-scale motions becomes larger at the higher Reynolds number, while the suppression of large-scale motions by the control is weaker than that of near-wall coherent structures. In both controlled and uncontrolled cases, large-scale motions can modulate the amplitudes of near-wall coherent structures, and the attenuation of streamwise vortices by the control under large-scale high-speed streaks is significantly less effective than that under large-scale low-speed streaks. As a result, the effectiveness of control in suppressing near-wall coherent structures and Reynolds shear stresses becomes weaker at the higher Reynolds number. The quantitative analysis of the contributions to the drag reduction rate from outer and inner regions shows that the effectiveness of the control is mainly determined by the suppression degree of near-wall motions. Furthermore, budgets of streamwise enstrophy are analysed to reveal the interaction of large-scale motions with near-wall streamwise vorticity. The titling effect induced by large-scale motions is positive under large-scale high-speed streaks, but negative under large-scale low-speed streaks, which could be a possible way of large-scale motion to modulate streamwise vorticity. In the controlled cases, the positive titling effect induced by large-scale motions under large-scale high-speed streaks is even enhanced, while other terms in the budgets are reduced, which could explain the degradation of control effectiveness in suppressing near-wall streamwise vortices under large-scale high-speed streaks. Therefore, the loss in the drag reduction rate at the higher Reynolds number is due to the weakened control effectiveness on near-wall coherent structures, which are exposed to the modulation effect of large-scale motions.  相似文献   

10.
Large-eddy simulations are carried out in turbulent open-channel flows to determine the roughness function and the equivalent sand-grain roughness height, ks, over sand-grain roughness and different types of realistic roughness replicated from hydraulic turbine blades. A range of Reynolds numbers and mean roughness heights is chosen, leading to both transitionally and fully rough regimes. The start of the fully rough regime is shown to depend on the roughness type, and ks depends strongly on the surface topography. We then examine several existing correlations that predict ks based on the information of the surface geometry. In the cases where the surface slope is an important parameter, the moments of surface height statistics do not predict the roughness function, while the existing forms of slope-based correlations perform well. The range of applicability of various correlations is shown to vary with the roughness topography, as the critical value of the effective slope, separating the waviness and roughness regimes, is shown to be higher for a realistic surface, compared to the value for the more regular types of roughness that were previously studied.  相似文献   

11.
    
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.  相似文献   

12.
双侧进气突扩燃烧室中三维湍流有施回流两相流动的数值模拟周力行,林文漪,廖昌明(清华大学工程力学系北京100084)关键词:湍流两相流,数值模拟为提高整体式冲压发动机双侧进气突扩燃烧室火焰稳定能力,我们提出了进气管内装设有切向导角的中心管。流场显示及L...  相似文献   

13.
The topological evolution near the turbulent/non-turbulent interface (TNTI) in turbulent mixing layer is studied by means of statistical analysis of the invariants of velocity gradient tensor (VGT) based on direct numerical simulation data. The dynamics of topological evolution is investigated in terms of the source terms of the evolution equations for the invariants, including the pressure effect term, viscous effect term and interaction term among the invariants. It is found that the local topology of fluid particles at the TNTI evolves from non-focal region to focal region in the plane of the second (Q) and the third (R) invariants of the VGT. The topological evolution is mainly associated with the pressure effect term in the TNTI region. According to the analysis of the evolution of enstrophy and dissipation, the enstrophy increase and the dissipation decrease are revealed in the TNTI region, which are caused by viscous vorticity diffusion near the TNTI. A weak correlation between the strain rate and the rotation rate is found in the TNTI region which is related to the reduction of enstrophy production. The alignments between vorticity and strain near the TNTI are investigated and a strong alignment of the vorticity with the extensive eigenvector direction is identified in the TNTI region.  相似文献   

14.
本文采用直接模拟方法对超音速气流过流串联双空腔的流场进行研究,并与单空腔模型对照,分析了马赫数分别为1.5和2.5时双空腔之间的相互作用.结果 显示空腔剪切层振荡对全场流动的控制作用,上游空腔对下游空腔中剪切层的运动有加强的趋势,它同时还可降低下游空腔壁面上的声压级;而下游空腔对上游空腔的影响则很微弱.串联双空腔产生的...  相似文献   

15.
    
A spanwise heterogeneity of streamwise drag is known to lead to the formation of large secondary motions of Prandtl's second kind. Based on the data sets extracted from direct numerical simulations (DNS) of fully developed turbulent channel flow where streamwise stripes of free-slip surface with varying spanwise extension are introduced, we investigate the topological structure of the secondary motions. We find a complex restructuring of the secondary motion with increasing extent of free-slip/no-slip region where the width of the free-slip region in viscous units appears to be one important governing parameter for the vortex formation. The most striking feature of this restructuring is a change in the rotational direction of the major vortex pair such that the related high- and low-momentum pathways are found at different locations. The present results reveal that the spanwise inhomogeneity of the Reynolds stress distribution is strongly related to the observed change of rotational direction. In addition, it is shown that the vorticity source remains largely unchanged and mainly restricted to a rather small region close to the discontinuity in the boundary condition, despite the fact that the topology of secondary motions substantially changes with variation of the spanwise length scale. This suggests a complex interplay between the vortices that are generated at the surface discontinuities and the surrounding flow.  相似文献   

16.
    
The present study presents different k-ε turbulence closures for atmospheric boundary layer flows using computational fluid dynamics (CFD) simulations that are consistent with inflow conditions from numerical weather prediction (NWP) simulations. Eight different mesoscale turbulence parameterisation schemes of the Weather Research and Forecasting (WRF) model are covered. To ensure consistency between the NWP and CFD simulations, different closure coefficients of the k ? ε turbulence model for each NWP scheme are proposed. This is achieved by combining production–dissipation closure coefficient relationships based on the Monin–Obukhov similarity theory and the formulation based on the Coriolis parameter proposed by Detering and Etling. The proposed methodology has been implemented in the open source CFD toolbox OpenFOAM and is demonstrated at near-neutral stability conditions for the classical Askervein Hill case.  相似文献   

17.
We investigate the heat-release effects on the characteristics of the subgrid-scale (SGS) stress tensor and SGS dissipation of kinetic energy and enstrophy. Direct numerical simulation data of a non-premixed reacting turbulent wall-jet flow with and without substantial heat release is employed for the analysis. This study comprises, among others, an analysis of the eigenvalues of the resolved strain rate and SGS stress tensors, to identify the heat-release effects on their topology. An assessment of the alignment between the eigenvectors corresponding to the largest eigenvalues of these two tensors is also given to provide further information for modelling of the SGS stress tensor. To find out the heat-release effects on the dynamics of the turbulent kinetic energy and enstrophy dissipation, probability density functions (PDFs) and mean values are analysed. The mean SGS shear stress and turbulent kinetic energy both slightly increase in the buffer layer and substantially decrease further away from the wall, due to the heat-release effects. Contrary to the kinetic energy, heat release decreases the mean SGS dissipation of enstrophy in the near-wall region. Moreover, differences in the shapes of the PDFs between the isothermal and exothermic cases indicate changes in the intermittency level of both SGS dissipations. Heat release also increases the SGS stress anisotropy in the near-wall region. Although, the structure of the mean resolved strain-rate tensor only marginally differs between the isothermal and exothermic cases in the near-wall region, substantial differences are observed in the jet area, where compressibility effects are important and heat-release effects are found to promote compression states. The differences in the relative alignment between the SGS stress and resolved strain-rate tensors in the isothermal and exothermic cases are discussed in connection with the differences in the SGS dissipation of kinetic energy.  相似文献   

18.
The nonlinear evolution process of new vortex structures at the late-stage of the transition, including the 3-D spatial structure of barrel-shaped vortex and dark spots structure observed by experiment research, has been confirmed by our computational results. The formation mechanisms of these structures have been explored. It is revealed that the new vortex structures, the ring-like vortex chain and induced disturbance velocities play a dominant role in the generation of turbulent spots.  相似文献   

19.
    
Three-dimensional large-eddy simulations (LES) of the convective boundary layer over a domain of approximately 6 km are performed with the UCLA LES model. Simulations are forced with a constant surface heat flux and prescribed subsidence, and are run to equilibrium. Sub-grid scale fluxes are parameterised with the Smagorinsky–Lilly scheme. A range of grid spacings from 40 down to 5 m are employed. Kinetic energy spectra and the various terms in the kinetic energy spectral budget – heat flux, nonlinear transfer, pressure, and dissipation – are computed using two-dimensional discrete Fourier transforms at every vertical level. Despite the fact that isotropic grid spacings of down to 5 m (grid sizes of 11522×400) were used, an inertial range with a ?5/3 spectrum is not obtained. Rather, shallower energy spectral slopes that are closer to ?4/3 are found. The shallower spectra are shown to possibly result from the injection of kinetic energy over a wide range of scales via a very broad heat flux spectrum. Only with the highest resolution (Δx = 5 m) does the total heat flux begin to converge and the possibility of local isotropy emerge at small scales. Dependence on surface heat flux and domain size is considered. Preliminary sub-grid scale sensitivity results are obtained through comparison with the turbulent kinetic energy sub-grid scale model.  相似文献   

20.
Reactions in turbulent flows, chemical reactions or combustion, are common. Typically reaction time scales are much shorter than turbulence timescales. In biological applications, as it is the case for bacterial and plankton populations living under the influence of currents in oceans and lakes, the typical lifetime can be long and thus can fall well within the inertial range of turbulence time scales. Under these conditions, turbulent transport interacts in a very complex way with the dynamics of growth and death of the individuals in the population. In the present paper, we quantitatively investigate the effect of the flow compressibility on the dynamics of populations. Small effective compressibility can be induced by several physical mechanisms, such as, e.g., by the density mismatch, by a small but finite size of microorganisms, and by gyrotaxis (an interaction between swimming and shear). We report, for the first time, how even a tiny effective compressibility can produce a dramatically large effect on global quantities like the carrying capacity of the ecosystem. We interpret our findings by means of a cumulative effect made possible by the long replication times of the organisms with respect to turbulence time scales. A statistical quantification of the fluctuations of population concentration is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号