首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
应用含刚度折减的椭圆形弹性核模拟了层板的损伤问题,研究了复合材料层板及加筋壁板冲击后的剩余强度问题。利用含椭圆核各向异性杂交应力有限单元对损伤层板进行了应力分析,采用基于特征曲线概念的点应力判据预测了含损伤层板、加筋壁板的剩余强度;基于Abaqus用户子程序uel实现了该方法在工程中的应用,并讨论各种参数对剩余强度的影响。研究结果表明此方法是有效的。  相似文献   

2.
Crack link-up for multiple site damage using an energy density approach   总被引:1,自引:0,他引:1  
An energy-based crack link-up criterion for multiple site damage conditions is proposed. It is based on the magnitude of strain energy increase during the fracture of the ligament between two adjacent cracks. For the application and verification of the methodology, experiments from the open literature are used. The energy of interest is calculated using elastic–plastic finite element analysis. Numerical results obtained by the proposed methodology are in correlation with experimental data. In all cases considered the present ligament failure criterion has proved to give better predictions, as compared to alternative link-up prediction methodologies.  相似文献   

3.
This paper focuses on the development of a thermodynamic approach to constitutive modelling of concrete materials, with emphasis on the use of non-local damage models. Effort is put on the construction of a consistent and rigorous thermodynamic framework, which readily allows the incorporation of non-local features into the constitutive modelling. This is an important feature in developing non-local constitutive models based on thermodynamics. Examples of non-local constitutive models derived from this framework and numerical examples are given to demonstrate the promising features of the proposed approach.  相似文献   

4.
The advantages of expressing stress intensity factors in terms of weight functions are widely appreciated. However, the main obstacle in the determination of weight functions has been the definition of the crack opening displacement (COD) field. There are several approaches currently used, the most common is assuming an expression to define COD in terms of the crack dimensions and stress state. A recent development in weight function application simplifies the tranditional stress intensity factor calculation. This development uses more than one reference stress intensity factor and associated stress field to eliminate the need to assume a COD field. This paper describes current application of COD for weight functions and explains the full advantage of adopting a multiple reference state (MRS) weight function approach.  相似文献   

5.
6.
A unified method for solving the strip yield model for collinear cracks in finite and infinite sheet is proposed. The method is based on the weight function of a single crack. Two collinear cracks in finite and infinite sheets are used to apply and verify this method. The plastic zone size, crack opening displacement and stress distribution along the ligament between cracks obtained by using the present method are extensively compared with existing available results and finite element solutions, and very good agreements are observed. Combined with the Crack Tip Opening Angle (CTOA) criterion, the unified method is used to predict the crack growth behavior and residual strength for 2024-T3 aluminum alloy sheet with Multiple Site Damage (MSD). Thirty-two sheets with four types of MSD are designed and tested to verify this method. It is shown that the present method is able to predict various crack growth behaviors observed in experiment. The predicted residual strengths are within 9% of the corresponding test results. Compared to the elastic–plastic finite element method, the present method is much more efficient.  相似文献   

7.
8.
We analyze stress softening phenomena within the framework of the ‘generalized standard material’ based on the notion of a ‘normal dissipative mechanism’. We prove that the monotonicity properties of the ‘yield function’ governing such mechanism lead to local and global uniqueness of the response. Applications to oscillators with a single degree of freedom, whose anharmonic spring exhibits stress softening, are also presented.  相似文献   

9.
The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry’s law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick’s law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.  相似文献   

10.
The strip yield model is used to assess the link-up of multiple fatigue cracks in a simple open hole configuration. This analysis is based upon the complex stress function formulation of the problem of multiple straight collinear cuts in an infinite sheet. The predictions of link-up and fracture are compared to results from a fatigue crack propagation test on an open hole specimen, and are shown to be in very close agreement.  相似文献   

11.
This paper presents a new technique that combines Grad’s 13-moment equations (G13) with a phenomenological approach to rarefied gas flows. This combination and the proposed solution technique capture some important non-equilibrium phenomena that appear in the early continuum-transition flow regime. In contrast to the fully coupled 13-moment equation set, a significant advantage of the present solution technique is that it does not require extra boundary conditions explicitly; Grad’s equations for viscous stress and heat flux are used as constitutive relations for the conservation equations instead of being solved as equations of transport. The relative computational cost of this novel technique is low in comparison to other methods, such as fully coupled solutions involving many moments or discrete methods. In this study, the proposed numerical procedure is tested on a planar Couette flow case, and the results are compared to predictions obtained from the direct simulation Monte Carlo method. This test case highlights the presence of normal viscous stresses and tangential heat fluxes that arise from non-equilibrium phenomena, which cannot be captured by the Navier–Stokes–Fourier constitutive equations or phenomenological modifications.   相似文献   

12.
A yield function for single crystals containing voids has been developed based on a variational approach. This first yield function is phenomenologically extended by modifying the dependence on the mean stress and introducing three adjustable parameters. Unit cell finite element calculations are performed for various stress triaxiality ratios, main loading directions and porosity levels in the case of a perfectly plastic FCC single crystal. The three model parameters are adjusted on the unit cell calculations so that a very good agreement between simulation results and the proposed model is obtained.  相似文献   

13.
Porous materials, such as geomaterials, exhibit a behaviour dependent on the confining pressure. The aim of this paper is to study the degradation of the elastic stiffness of mean stress dependent materials, due to the deterioration of the microstructure during loading.Continuum damage mechanics offers a framework to model this rigidity deterioration. In addition to the concept of effective stress, a choice has to be made between two widely used hypotheses, the principle of strain equivalence and the principle of equivalent elastic energy, in order to build a complete modelling framework.A mean stress dependent hyperelastic formulation is used to ensure a conservative behaviour, and associated to the two previous damage modelling assumptions, whose effects are compared. This allows for mean stress dependent elasticity to be reproduced, with elastic moduli increasing with mean stress while decreasing with damage.  相似文献   

14.
In the electro-mechanical impedance (EMI) technique, which is based on induced strain actuation through piezoelectric ceramic (PZT) patch, the knowledge of shear stress distribution in the adhesive bond layer between the patch and the host structure is very pertinent for reliable health monitoring of structures. The analytical derivation of continuum based shear lag model covered in this paper aims to provide an improved and more accurate model for shear force interaction between the host structure and the PZT patch (assumed square for simplicity) through the adhesive bond layer, taking care of all the piezo, structural and adhesive effects rigorously and simultaneously. Further, it eliminates the hassle of determining the equivalent impedance of the structure and the actuator separately, as required in the previous models, which was approximate in nature. The results are compared with the previous models to highlight the higher accuracy of the new approach. Based on the new model, a continuum based interaction term has been derived for quantification of the shear lag and inertia effects.  相似文献   

15.
Wu  Tao  An  Feng  Gao  Xiangyun  Zhong  Weiqiong  Kurths  Jürgen 《Nonlinear dynamics》2023,111(10):9289-9304

Multistep prediction is an open challenge in many real-world systems for a long time. Despite the advantages of previous approaches, e.g., step-by-step iteration, they have some shortcomings, such as accumulated errors, high cost, and low interpretation. To this end, Gaussian process regression and delay embedding are used to create a combination framework, namely spatial–temporal mapping (STM). Delay embedding is employed to reconstruct an isomorphic dynamical structure with the original system through a single time series, which provides the fundamental architecture for multistep predictions (interpretation). Gaussian process regression is used to achieve predictions by identifying a mapping between the reconstructed dynamical structure and the original structure. This combination framework outputs multistep ahead predictions in a single step (low cost). We test the feasibility of STM for both model systems, including the 3-species ecology system, the Lorenz chaotic system, and the Rossler chaotic system, and several real-world systems, involving energy, finance, life science, and climate. STM framework outperforms traditional iterative approaches and has the potential for many other real-world systems.

  相似文献   

16.
A. Garg  K. Tai  A. K. Gupta 《Meccanica》2014,49(5):1193-1209
AISI steel 304 is used in nuclear reactors for the cladding of fuel rods. In the literature, various mathematical modelling methods such as support vector regression (SVR), artificial neural network (ANN) and multi-gene genetic programming (MGGP) have been applied to study the properties of this steel. Among these methods, MGGP possesses the ability to evolve the model structure and its coefficients. The model participating in the evolutionary stage of the MGGP algorithm is a weighted linear sum of several genes, with the weights determined by selecting the genes randomly and combining them using the least squares method to form a MGGP model. As a result, there is a possibility that a gene of lower performance can degrade the performance of the model. To counter this, a modified MGGP (M-MGGP) method is proposed and which introduces a new technique of stepwise regression for the selective combination of genes of only higher performance. The M-MGGP method is applied to the true stress value data obtained from tensile tests conducted on austenitic stainless steel 304 subjected to different strain rates and temperatures. The results show that the M-MGGP model is able to extrapolate the values of true stress more satisfactorily than those of the standardized MGGP, ANN and SVR models. The M-MGGP models are also smaller in size than those from MGGP. The results suggest that the M-MGGP method provides compact and accurate models that can be deployed by experts for efficiently studying the properties of the steel at elevated temperatures.  相似文献   

17.
A direct correspondence is shown to exist between the Westergaard stress function for crack problems and a newly-introduced stress function for rigid line inclusion problems. A correspondence is also shown to exist between stress intensities in the crack and the inclusion problems, as well as between the opening displacement of the crack and the axial force in the inclusion. A scheme is presented to modify these rigid-inclusion solutions to account approximately for non-zero compliance of real fibers in a composite material.  相似文献   

18.
19.
20.
Crack bridging is an important source of crack propagation resistance in many materials and the bridging stress distribution as a function of crack opening displacement is widely believed to represent a true material property uninfluenced by sample geometry, loading conditions, and other extrinsic factors. Accordingly, accurate measurement of the bridging stress distribution is needed and many non-destructive methods have been developed. However, there are many challenges to accurately determining bridging stresses. A comparison of bridging stresses measured using R-curve, crack opening displacement (COD), and spectroscopy methods has been made using two bridging ceramics, Y2O3 and MgO doped Si3N4 and 99.5% pure Al2O3. The COD method is surface sensitive and gives a lower peak bridging stress compared to the R-curve technique which samples through the entire material thickness. This is attributed to a more compliant near surface bridging zone. Conversely, when R-curves rise steeply over the first few micrometers of growth from a notch, an effect of negative T-stress is expected to raise the R-curve determined peak bridging stress. Spectroscopy methods were only found to yield reliable bridging stress results if a reasonable through thickness volume of material is sampled. It was found that 2.5% of the specimen thickness achieved using fluorescence spectroscopy appears adequate for Al2O3 while 0.1–0.2% of the sample thickness achieved using Raman spectroscopy for Si3N4 appears inadequate. Overall, it is concluded that in the absence of T-stresses a bridging distribution can be determined that is a true material property. Also, a new method is proposed for determining the bridging stresses of fatigue cracks from (1) the bridging stress distribution for monotonically loaded cracks and (2) experimental fatigue data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号