首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
M. Anija 《Optics Communications》2009,282(18):3770-3774
We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 1015 W/cm2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.  相似文献   

2.
Ultrafast laser ablation of fused silica is studied using molecular dynamics simulations. Ionization and generation of free electrons, absorption of the laser energy by free electrons and energy coupling between free electrons and ions are considered. The BKS potential is applied and modified to describe molecular interactions and the effect of free electrons. Smooth particle mesh of the Ewald method (SPME) is adopted to calculate the Coulomb force. It is found that the electrostatic Coulomb force, which is caused by the ionization, plays an important role in the laser ablation process.  相似文献   

3.
In many laser applications such as drilling, welding and cutting, the role of the plasma in the transfer of energy between the laser beam and the metal surface appears to be rather important. It depends on several parameters such as laser wavelength, irradiation time and deposited energy but especially on the buffer gas nature. In this work the plasma is initiated by a TEA-CO2 laser beam perpendicularly focussed onto a Ti target (100 MW/cm2), in a cell containing He, Ar or a He-Ar mixture as buffer gas. The plasma is studied by time and space resolved spectroscopic diagnostics. The results show that helium allows target erosion whereas a highly absorbing breakdown plasma develops in argon shielding the target from the subsequent laser heating. With only 20% Ar in He, a strong quenching of the He plasma by Ar occurs, and the Ar plasma effect is dominant.  相似文献   

4.
The scaling of recombination XUV lasers to shorter wavelengths requires laser plasmas produced at initial electron densities close to solid. With pump laser pulses longer than a few tens of picoseconds the hydrodynamic motion of the plasma during the interaction makes this difficult to achieve. In contrast, when picosecond laser pulses are used the laser energy is absorbed close to solid density since the plasma expansion is insignificant during the laser pulse. This results in hot near solid density plasmas which are needed for hydrogenic recombination X-ray lasers operating in the water window. Experimental observations have shown that a fully ionized aluminium plasma with a temperature of about 400 eV and a density well above 1023 cm–3 is produced when an aluminium target is irradiated with a single 3.5 ps high power KrF laser pulse.  相似文献   

5.
A schlieren method was used to generate time-resolved images of the tunneling ionization front produced when an ultrashort high-power laser pulse irradiates He gas. By superimposing sequential schlieren images, we obtained information about the laser propagation and found that the ionization front propagated farther with decreasing density of the target gas. Ray-tracing suggested that this density dependence is a result of the spatial distribution of the laser intensity. Received: 20 May 1999 / Revised version: 19 August 1999 / Published online: 27 January 2000  相似文献   

6.
A collinear double pulse laser-induced plasma was characterised by means of a spectrally and time resolved imaging technique. The beams of two Q-switched Nd:YAG lasers were focused on a brass target in a vacuum chamber to form the plasma. The plume emission intensity and spatial distribution were recorded with temporal resolution using an intensified CCD. Using a set of interference filters, we collected images of the emission from the major target components as well as from oxygen. Both the laser inter-pulse separation (in the range between 0 and 10 s) and the ambient air pressure value (in the range between 105 and 10 Pa) were varied during the experiment. At atmospheric pressure, an enhancement of the line emission from the target elements was observed for delayed laser pulses compared to coincident pulses. However, this enhancement effect tends to fall at low pressure values, and a decrease of the signal is observed for pressures under about 104 Pa. Moreover, it was observed that the evaluation of the enhancement factor strongly depends on the detector field of view. The propagation of the emitting plume was also studied at several pressures and inter-pulse delays.  相似文献   

7.
陈钢  程成 《中国物理快报》2008,25(10):3666-3669
The kinetic process of Sr atom metastable-metastable transition lasers in He-St longitudinal pulsed discharge is analysed and a concise self-consistent physical model is developed. The temporal evolutions of discharge parameters, main paxticle densities, the electron temperature, and the lasing pulses are numerically calculated. The results provided by the model agree well with the experiment, and the temporal behaviour of each laser pulse is explained successfully by the simulation results.  相似文献   

8.
We demonstrate the applicability of a Li-based liquid jet as a regenerative source of narrow-band extreme-ultraviolet (EUV) emission at 13.5 nm. It was found that a conventionally used single laser pulse did not produce optimum plasma conditions for a low-Z target, like Li. It was shown that deployment of dual nano-second laser pulses enhanced the in-band EUV conversion efficiency (CE) at 13.5 nm in 2 sr by three times its value using a single laser pulse. Dependence of the emission spectra and EUV CE on the delay time between dual laser pulses revealed that the emission at 13.5 nm from Li ions was preferably enhanced at a lower plasma temperature compared to that at 13.0 nm from oxygen ions.  相似文献   

9.
2 Cu3O7 target in vacuum and the plasma thus generated was studied using time-resolved spectroscopic techniques. Line broadening of the Ba I emission line at 553.5 nm was monitored as a function of time elapsed after the incidence of a laser pulse on the target. Measured line profiles of barium species were used to infer the electron density and temperature, and the time evolution of these important plasma parameters has been worked out. Received: 23 April 1997/Revised version: 25 August 1997  相似文献   

10.
The plasma plume induced during ArF laser ablation of a graphite target is studied. Velocities of the plasma expansion front are determined by the optical time of flight method. Mass center velocities of the emitting atoms and ions are constant and amount to 1.7×104 and 3.8×104 m s−1, respectively. Higher velocities of ions result probably from their acceleration in electrostatic field created by electron emission prior to ion emission. The emission spectroscopy of the plasma plume is used to determine the electron densities and temperatures at various distances from the target. The electron density is determined from the Stark broadening of the Ca II and Ca I lines. It reaches a maximum of ∼9.5×1023 m−3 30 ns from the beginning of the laser pulse at the distance of 1.2 mm from the target and next decreases to ∼1.2×1022 m−3 at the distance of 7.6 mm from the target. The electron temperature is determined from the ratio of intensities of ionic and atomic lines. Close to the target the electron temperature of ∼30 kK is found but it decreases quickly to 11.5 kK 4 mm from the target.  相似文献   

11.
A thermal model to describe the high-power nanosecond pulsed laser ablation is presented. It involves the vaporization and the following plasma shielding effect on the whole ablation process. As an example of Si target, we obtainthe time evolution of the calculated surface temperature, ablation rate and ablation depth. It can be seen that plasma shielding plays a more important role in the ablation process with time. At the same time, the ablation depth with laser fluence based on different models is shown. Moreover, we simulate the pulsed laser irradiation Ni target. The evolution of the transmitted intensity and the variation of ablation depth per pulse with laser fluence are performed. Under the same experimental conditions, the numerical results calculated with our thermal model are more in agreement with the experimental data.  相似文献   

12.
2 Cu3O7, using a Q-switched Nd:YAG laser is investigated by time-resolved emission-spectroscopic techniques at various laser irradiances. It is observed that beyond a laser irradiance of 2.6×1011 W cm-2, the ejected plume collectively drifts away from the target with a sharp increase in velocity to 1.25×106 cm s-1, which is twice its velocity observed at lower laser irradiances. This sudden drift apparently occurs as a result of the formation of a charged double layer at the external plume boundary. This diffusion is collective, that is, the electrons and ions inside the plume diffuse together simultaneously and hence it is similar to the ambipolar diffusion of charged particles in a discharge plasma. Received: 30 January 1998/Revised version: 12 June 1998  相似文献   

13.
We present the theoretical investigation of photoelectron spectroscopy resulting from the strong field induced multiphoton ionization in a typical three-level ladder-style system. Our theoretical results show that the photo-electron spectral structure can be alternatively steered by spectral phase modulation. This physical mechanism for strong field quantum control is explicitly exploited by the time-dependent dressed state population. It is concluded that the phase-shaped laser pulses can be used to selectively manipulate the multiphoton ionization process in complicated quantum systems.  相似文献   

14.
Fluorescence measurements have been used to characterize the velocity of atoms in a femtosecond-laser-produced plasma. Nanogram amounts of a copper sample were ablated by the focused radiation (λ=775 nm) of an all-solid-state laser. The laser was operated at a pulse rate of 10 Hz with an energy of 200μJ per pulse. The microplasma expanded into a defined argon atmosphere of pressures between 0.02 and 850 mbar. Atomic fluorescence was excited in the laser plume by a dye-laser pulse with the wavelength set to the line Cu I 282.4 nm. The narrowed beam of the dye-laser was directed into the plasma at different heights above the sample surface. The fluorescence radiation was measured with an échelle-spectrometer, equipped with an intensified-charge-coupled device as the detector. The velocity depends strongly on the pressure of the ambient atmosphere and the distance from the sample surface. The highest velocity found at an argon pressure of 0.02 mbar was 1.0×106 cm s−1.  相似文献   

15.
李洪玉  刘建胜 《物理学报》2010,59(11):7850-7856
采用三维粒子动力学模拟方法研究了甲烷团簇在超短强激光脉冲激励下的爆炸动力学行为,重点讨论了几种典型的内电离机理对团簇爆炸过程中离子的价态和动能的影响.研究表明,在激光脉冲强度比较小的情况下,团簇中的原子主要是在光场作用下通过隧道电离的方式发生电离.当激光场进一步增强时,势垒压低电离是电离的主要方式.在相同的较高激光强度下,团簇更容易通过势垒压低电离达到高的电离价态.团簇发生电离后,其内部库仑电场的点火电离效应和内部滞留自由电子的碰撞电离效应也将增强团簇的再次电离过程. 关键词: 超短强激光脉冲 甲烷团簇 内电离  相似文献   

16.
High energy electron acceleration in a wake field generated in the intense ultrashort (30fs) laser pulse cluster gas jet interaction is experimentally demonstrated. Relativistic electrons with energy of 60 MeV were observed. These high energy electrons split into two beams due to the relativistic self-focusing of the laser.  相似文献   

17.
The vaporization effect and the following plasma shielding generated by high-power nanosecond pulsed laser ablation are studied in detail based on the heat flux equation. As an example of Si target, we obtain the time evolution of the calculated surface temperature, ablation rate and ablation depth by solving the heat flow equations using a finite difference method. It can be seen that plasma shielding plays a more important role in the ablation process with time. At the same time, the variation of ablation depth per pulse with laser fluence is performed. Our numerical results are more agreed with the experiment datum than other simulated results. The result shows that the plasma shielding is very important.  相似文献   

18.
白春江  崔万照  余金清 《物理学报》2016,65(11):113201-113201
为了进一步理解极端条件下物质的电离特性, 特别是超短超强激光脉冲辐照超薄靶时等离子体的形成与分布, 本文以超薄碳膜为例, 细致研究了超短超强激光脉冲辐照下原子的离化过程. 分析和比较了强激光场直接作用电离和靶内静电场电离等两种场致电离形式, 在碰撞电离可以忽略的情况下, 发现更多的电离份额是来自靶内静电场的电离方式. 研究了激光脉冲强度对电离的影响, 发现激光脉冲强度越强, 电离速度越快, 产生的高价态离子所占比例也越高.当激光强度为1×1020 W/cm2时, 尽管该强度高于电离生成C+6所需要的激光强度阈值, 但该激光脉冲并不能将整个靶电离成C+6离子, 对此本文进行了详细的分析. 在研究激光脉冲宽度的影响时, 发现激光脉宽越小, 电离速度越快, 但越小的激光脉冲电离获得的高价态离子越少.  相似文献   

19.
It is experimentally demonstrated that a relatively strong ion-rich sheath formed at a fixed negative bias of the grid can be changed to a rather weak ion sheath (sheath potential weakly retards electrons) only by increasing the discharge voltage in the system. At sufficiently high negative grid bias, an increase of discharge voltage enhances the ion collection current at the grid. An explanation is put forward in support of this experimental observation. A slight density enhancement with a fall in plasma electron temperature is also observed with the increasing negative grid bias.  相似文献   

20.
We propose a plasma channel scheme to obtain an improved table-top laser driven fusion neutron yield as a result of explosions of large deuterium clusters irradiated by an intense laser pulse. A cylindrical plasma channel is created by two moderate intensity laser prepulses at the edge of a deuterium cluster jet along which an intense main laser pulse propagates several nanoseconds later. With the aid of this plasma channel, the main laser pulse will be allowed to deposit its energy into the central region of the deuterium gas jet where the cluster sizes are larger and the atomic density is higher. The plasma channel formation and its impact on the deuterium ion energy spectrum and the consequent fusion neutron yield have been investigated. The calculated results show that a remarkable increase of the table-top laser driven fusion neutron yield would be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号