首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to bridge the gap between the crystal structure of photosynthetic pigment-protein complexes and the data gathered in optical experiments, two essential problems need to be solved. On one hand, theories of optical spectra and excitation energy transfer have to be developed that take into account the pigment-pigment (excitonic) and the pigment-protein (exciton-vibrational) coupling on an equal footing. On the other hand, the parameters entering these theories need to be calculated from the structural data. Good agreement between simulations and experimental data then allows to draw conclusions on structure-function relationships of these complexes and to make predictions. In the development of theory, a delicate question is how to describe the interplay between the quantum dynamics of excitons and the dephasing of coherences by the coupling of excitons to protein vibrations. Quantum mechanic coherences are utilized for efficient light harvesting. In the reaction centers of purple bacteria an energy sink is created by a coherent coupling of exciton states to intermolecular charge transfer states. The dephasing of coherences can be monitored, e.g., by the temperature dependent shift of optical lines. In the Fenna-Matthews-Olson protein, which acts as an excitation energy wire between the outer chlorosome antenna and the reaction center complex, an energy funnel for efficient light-harvesting is formed by the pigment-protein coupling. The protein shifts the local transition energies of the pigments, the so-called site energies in a specific way, such that pigments facing the reaction center are redshifted with respect to those on the chlorosome side. In the light-harvesting complex of higher plants an excitation energy funnel is created by the use of two different types of chlorophyll (Chl) pigments, Chla and Chlb and by the pigment-protein coupling that creates an energy sink at Chla 610 located in the stromal layer at the periphery of the complex. The close contact between Chla and Chlb gives rise to ultrafast subpicosecond exciton transfer, whereas dynamic localization effects are inferred to lead to long ps relaxation times between the majority of Chla pigments.  相似文献   

2.
At the instant following the non-radiative deactivation of its ππ* electronic state, the vibrational modes of thymine possess a highly non-equilibrium distribution of excitation quanta (i.e., >4 eV in excess energy). Equilibrium is re-established through rapid (5 ps) vibrational energy transfer to the surrounding solvent. The mechanisms behind such vibrational cooling (VC) processes are examined here using femtosecond transient grating and two-dimensional photon echo spectroscopies conducted at 100 K and 300 K in a mixture of methanol and water. Remarkably, we find that this variation in temperature has essentially no impact on the VC kinetics. Together the experiments and a theoretical model suggest three possible mechanisms consistent with this behavior: (i) vibrational energy transfer from the solute to solvent initiates (directly) in intramolecular modes of the solute with frequencies >300 cm(-1); (ii) the relaxation induced increase in the temperature of the environment reduces the sensitivity of VC to the temperature of the equilibrium system; (iii) the time scale of solvent motion approaches 0.1 ps even at 100 K. Mechanism (i) deserves strong consideration because it is consistent with the conclusions drawn in earlier studies of isotope effects on VC in hydrogen bonding solvents. Our model calculations suggest that mechanism (ii) also plays a significant role under the present experimental conditions. Mechanism (iii) is ruled out on the basis of long-lived correlations evident in the photon echo line shapes at 100 K. These insights into photoinduced relaxation processes in thymine are made possible by our recent extension of interferometric transient grating and photon echo spectroscopies to the mid UV spectral region.  相似文献   

3.
Using a pump and test beam technique in the frequency domain with pump pulses in the nanosecond time range, the nonlinear transmission properties were investigated at room temperature in photosystem (PS) II membrane fragments and isolated light-harvesting chlorophyll a/b-protein preparations (LHC II preparations). In LHC II preparations and PS II membrane fragments, respectively, pump pulses of 620 nm and 647 nm cause a transmission decrease limited to a wavelength region in the nearest vicinity of the pump pulse wavelength (full width at half maximum ' 0.24 nm). In contrast, at 670 nm neither a transmission decrease nor a narrow band feature were observed. The data obtained for PS II membrane fragments and LHC II preparations at shorter wavelengths (620 nm, 647 nm) were interpreted in terms of excited state absorption of whole pigment-protein clusters within the light-harvesting antenna of photosystem II. The interpretation of the small transmission changes as homogeneously broadened lines led to a transversal relaxation time for chlorophyll in the clusters of about 4 ps.  相似文献   

4.
We studied the pathways of vibrational energy relaxation of the amide I (~1660 cm?1) and amide II (~1560 cm?1) vibrational modes of N-methylacetamide (NMA) in CCl? solution using two-color femtosecond vibrational spectroscopy. We measured the transient spectral dynamics upon excitation of each of these amide modes. The results show that there is no energy transfer between the amide I (AI) and amide II (AII) modes. Instead we find that the vibrational energy is transferred on a picosecond time scale to a common combination tone of lower-frequency modes. By use of polarization-resolved femtosecond pump-probe measurements we also study the reorientation dynamics of the NMA molecules and the relative angle between the transition dipole moments of the AI and AII vibrations. The spectral dynamics at later times after the excitation (>40 ps) reveal the presence of a dissociation process of the NMA aggregates, trimers, and higher order structures into dimers and monomers. By measuring the dissociation kinetics at different temperatures, we determined the activation energy of this dissociation E(a) = 35 ± 3 kJ mol?1.  相似文献   

5.
We theoretically investigate the evolutions of two-dimensional, third-order, nonlinear pho-ton echo rephasing spectra with population time by using an exact numerical path integral method. It is shown that for the same system, the coherence time and relaxation time of excitonic states are short, however, if the couplings of electronic and intra-pigment vibra-tional modes are considered, the coherence time and relaxation time of this vibronic states are greatly extended. It means that the couplings between electronic and vibrational modes play important roles in keeping long-lived coherence in light-harvesting complexes. Particularly, by using the method we can fix the transition path of the energy transfer in bio-molecular systems.  相似文献   

6.
Ultrafast excitation relaxation dynamics and energy-transfer processes in the light-harvesting complex II (LHC II) of Arabidopsis thaliana were examined at physiological temperature using femtosecond time-resolved fluorescence spectroscopy. Energy transfer from lutein to Chl a proceeded with a rate constant of k(ET) = 1.8-1.9 x 10(13) s(-1) and a yield of approximately Phi(ET) = 0.70, whereas that from neoxanthin to Chl a had a rate constant of k(ET) = 6.5 x 10(11) s(-1) and a yield at the most of Phi(ET) = 0.09. Fluorescence anisotropic decay of lutein in LHC II showed a value larger than 0.4 at the initial state and decayed to approximately 0.1 in 0.3 ps, indicating that two lutein molecules interact with each other in LHC II. In solution, anisotropy of lutein remained constant (0.38) independent of time, and thus a new excited state inferred between the S(2) (1B(u)) state and the S(1) (2A(g)) state was not applicable for lutein in solution. Energy migration processes among Chl a or Chl b molecules were clearly resolved by kinetic analysis. On the basis of these results, relaxation processes and energy-transfer kinetics in LHC II of A. thaliana are discussed.  相似文献   

7.
Femtosecond time-resolved absorption spectroscopy has been used to elucidate the excited-state dynamics associated with formation of the (2)E excited state in a Cr(III) transition metal complex. Cr(acac)(3) (where acac is the deprotonated monoanion of acetylacetone) exhibits monophasic decay kinetics with tau = 1.1 +/- 0.1 ps following excitation into the lowest-energy ligand-field absorption band; the time constant is found to be independent of both excitation and probe wavelength across the entire (4)A(2) --> (4)T(2) absorption envelope. The lack of a significant shift in the excited-state absorption spectrum combined with the observed spectral narrowing is consistent with an assignment of this process as vibrational cooling (k(vib)) in the (2)E state. The data on Cr(acac)(3) indicate that intersystem crossing associated with the (4)T(2) --> (2)E conversion occurs at a rate k(ISC) > 10(13) s(-)(1) and furthermore competes effectively with vibrational relaxation in the initially formed (4)T(2) state. Excitation into the higher energy (4)LMCT state (lambda(ex) = 336 nm) gives rise to biphasic kinetics with tau( 1) = 50 +/- 20 fs and tau( 2) = 1.2 +/- 0.2 ps. The slower component is again assigned to vibrational cooling in the (2)E state, whereas the subpicosecond process is attributed to conversion from the charge-transfer to the ligand-field manifold. In addition to detailing a process central to the photophysics of Cr(III), these results reinforce the notion that the conventional picture of excited-state dynamics in which k(vib) > k(IC) > k(ISC) does not generally apply when describing excited-state formation in transition metal complexes.  相似文献   

8.
Photosystem II (PSII) is responsible for the water oxidation in photosynthesis and it consists of many proteins and pigment-protein complexes in a variable composition, depending on environmental conditions. Sunlight-induced charge separation lies at the basis of the photochemical reactions and it occurs in the reaction center (RC). The RC is located in the PSII core which also contains light-harvesting complexes CP43 and CP47. The PSII core of plants is surrounded by external light-harvesting complexes (lhcs) forming supercomplexes, which together with additional external lhcs, are located in the thylakoid membrane where they perform their functions. In this paper we provide an overview of the available information on the structure and organization of pigment-protein complexes in PSII and relate this to experimental and theoretical results on excitation energy transfer (EET) and charge separation (CS). This is done for different subcomplexes, supercomplexes, PSII membranes and thylakoid membranes. Differences in experimental and theoretical results are discussed and the question is addressed how results and models for individual complexes relate to the results on larger systems. It is shown that it is still very difficult to combine all available results into one comprehensive picture.  相似文献   

9.
The picosecond excited-state dynamics of several derivatives have been investigated using high photon energy excitation combined with picosecond luminescence detection. Instrument response-limited fluorescence (tau(1) approximately equal to 3-5 ps) at 500 nm was observed for all of the complexes, while longer-lived emission (tau(2) > 50 ps), similar in energy, was observed for only some of the complexes. Interestingly, the presence of tau(2) required substitution at the 4,4-positions of the bipyridine ligands and D(3) symmetry for the complex; only the 4,4-substituted homoleptic complexes exhibited tau(2). On the basis of previous assignments of the ultrafast dynamics measured for Ru(bpy)(2+)3 and Ru(dmb)(2+)3, tau(2) has been tentatively ascribed to relaxation from higher electronic or vibrational levels in the triplet manifold having slightly more triplet character than the state responsible for tau(1). However, given that the kinetics for these transition metal complexes are highly dependent on both pump and probe wavelengths and that there is considerable interest in utilizing such complexes for electron transfer in the nonergodic limit, further characterization of the state giving rise to tau(2) is warranted.  相似文献   

10.
Nonequilibrium molecular dynamics (MD) simulations and instantaneous normal mode (INMs) analyses are used to study the vibrational relaxation of the C-H stretching modes (ν(s)(CH?)) of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. The INMs are identified unequivocally in terms of the equilibrium normal modes (ENMs), or groups of them, using a restricted version of the recently proposed Min-Cost assignment method. After excitation of the parent ν(s)(CH?) modes with one vibrational quantum, the vibrational energy is shown to dissipate through both intramolecular vibrational redistribution (IVR) and intermolecular vibrational energy transfer (VET). The decay of the vibrational energy of the ν(s)(CH?) modes is well fitted to a triple exponential function, with each characterizing a well-defined stage of the entire relaxation process. The first, and major, relaxation stage corresponds to a coherent ultrashort (τ(rel) = 0.07 ps) energy transfer from the parent ν(s)(CH?) modes to the methyl bending modes δ(CH?), so that the initially excited state rapidly evolves into a mixed stretch-bend state. In the second stage, characterized by a time of 0.92 ps, the vibrational energy flows through IVR to a number of mid-range-energy vibrations of the solute. In the third stage, the vibrational energy accumulated in the excited modes dissipates into the bath through an indirect VET process mediated by lower-energy modes, on a time scale of 10.6 ps. All the specific relaxation channels participating in the whole relaxation process are properly identified. The results from the simulations are finally compared with the recent experimental measurements of the ν(s)(CH?) vibrational energy relaxation in NMAD/D?O(l) reported by Dlott et al. (J. Phys. Chem. A 2009, 113, 75.) using ultrafast infrared-Raman spectroscopy.  相似文献   

11.
An optical Kerr shuttered spectrograph has been used to time resolve the spontaneous fluorescence of aromatic mixed crystal systems at low temperature with moderate resolution. Transient effects on the fluorescence of anthracene in naphthalene excited with 614 cm?1 vibrational excess energy in 1B2u have been observed that may signal measurable vibrational relaxation pathways. A model consistent with these observations is presented: it implicates a strong interaction between the intramolecular Franck—Condon and non-Franck—Condon modes in the relaxation process for specific excitation in the region of large excess lattice energy. Examination of the fluorescence for several aromatic systems integrated over the interval 0 to 30 ps following excitation high in the S1 vibrational manifold failed to reveal evidence of non-Boltzmann vibrational distributions, although other largely unexplained effects have been observed.  相似文献   

12.
Vibrational energy relaxation of degenerate CO stretches of four tungsten carbonyl complexes, W(CO)6, W(CO)5(CS), W(CO)5(CH3CN), and W(CO)5(CD3CN), is observed in nine alkane solutions by subpicosecond time-resolved infrared (IR) pump-probe spectroscopy. Between 0 and 10 ps after the vibrational excitation, the bleaching signal of the ground-state IR absorption band shows anisotropy. Decay of the anisotropic component corresponds either to the rotational diffusion of the molecule or to the intramolecular vibrational energy transfer among the degenerate CO stretch modes. The time constant of the anisotropy decay, tauaniso, shows distinct solvent dependence. By comparing the results for the T1u CO stretch of W(CO)6 and the A1 CO stretch of W(CO)5(CS), the time constant of the rotational diffusion, taur, and the time constant of the intramolecular energy transfer among the three degenerate vibrational modes, taue, are determined as 12 and 8 ps, respectively. The tauaniso value increases as the number of carbon atoms in the alkane solvent increases. After 10 ps, the recovery of the bleaching becomes isotropic. The isotropic decay represents the vibrational population relaxation, from v=1 to v=0. In heptane, the time constant for the isotropic decay, tau1, for W(CO)5(CS) and W(CO)6 was 140 ps. The tau1 for the two acetonitrile-substituted complexes, however, shows a smaller value of 80 ps. The vibrational energy relaxation of W(CO)5(CH3CN) and W(CO)5(CD3CN) is accelerated by the intramolecular energy redistribution from the CO ligand to the acetonitrile ligand. In the nine alkane solutions, the tau1 value of W(CO)6 ranges between 124 and 158 ps, showing the apparent V-shaped solvent dependence with its minimum in decane, while the tau1 value shows little solvent dependence for W(CO)5(CH3CN) and W(CO)5(CD3CN).  相似文献   

13.
We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.  相似文献   

14.
We have investigated the influence of nuclear geometric relaxation on the extent of the excited-state electronic delocalization in conjugated zinc porphyrin oligomers using ultrafast transient photoluminescence spectroscopy. By use of metal-coordinating templates that force the oligomers into specific geometries in solution we are able to distinguish clearly between relaxation effects arising from the two vibrational modes that preferentially couple to the electronic transitions in such materials, i.e., carbon-carbon bond stretches and inter-ring torsions. We find that light absorption generates an excited state that is initially strongly delocalized along the oligomer but contracts rapidly following vibrational relaxation of the nuclei along C-C stretch coordinates on the subpicosecond time scale. We are able to monitor such excitonic self-trapping effects by observing the extent to which the concomitant ultrafast rotation of the transition dipole moment is found to correlate with the degree of bending induced in the molecular backbone. We further demonstrate that interporphyrin torsional relaxation leads to a subsequent increase in the excited-state electronic delocalization on a longer time scale (approximately 100 ps). Such dynamic planarization of the molecular backbone is evident from the time-dependent increase in the overall emission intensity and red-shift in the peak emission energy that can be observed for wormlike flexible porphyrin octamers but not for torsionally rigidified cyclic or double-strand octamer complexes. These results therefore indicate that, following excitation, the initially highly delocalized excited-state wave function first contracts and then expands again along the conjugated backbone in accordance with the time periods for the vibrational modes coupled to the electronic transition.  相似文献   

15.
Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.  相似文献   

16.
Vibrational cooling by 9-methyladenine was studied in a series of solvents by femtosecond transient absorption spectroscopy. Signals at UV and near-UV probe wavelengths were assigned to hot ground state population created by ultrafast internal conversion following electronic excitation by a 267 nm pump pulse. A characteristic time for vibrational cooling was determined from bleach recovery signals at 250 nm. This time increases progressively in H2O (2.4 ps), D2O (4.2 ps), methanol (4.5 ps), and acetonitrile (13.1 ps), revealing a pronounced solvent effect on the dissipation of excess vibrational energy. The trend also indicates that the rate of cooling is enhanced in solvents with a dense network of hydrogen bonds. The faster rate of cooling seen in H2O vs D2O is noteworthy in view of the similar hydrogen bonding and macroscopic thermal properties of both liquids. We propose that the solvent isotope effect arises from differences in the rates of solute-solvent vibrational energy transfer. Given the similarities of the vibrational friction spectra of H2O and D2O at low frequencies, the solvent isotope effect may indicate that a considerable portion of the excess energy decays by exciting relatively high frequency (>/=700 cm-1) solvent modes.  相似文献   

17.
A photosystem I (PS I) holocomplex was obtained from barley by ultracentrifugation of PS I-enriched stroma lamellae on sucrose gradients. Further solubilization with glycosidic surfactants followed by Deriphat-poly-acrylamide gel electrophoresis (PAGE) fractionated the holocomplex into its core complex (CC I) and individual light-harvesting I (LHC I) pigment-protein subcomplexes. The LHC I contains chlorophyll a, all of the chlorophyll A of PS I and xanthophylls but no carotenes. Sodium dodecylsulfate PAGE analysis of the subcomplexes shows that barley LHC I is composed of at least five apoproteins having sizes between 11 and 24 kDa. Isolation of a 17 kDa LHC Ic component by Deriphat-PAGE shows it to be a photosynthetic pigment-protein. Room-temperature absorption spectra indicate that LHC Ic is enriched in chlorophyll a in comparison to the LHC Ia and Ib components. The LHC Ic apoprotein is shown to be distinct from the subunit III and IV polypeptides of CC I. Analysis of PS I fractions obtained from sucrose gradients as well as from Deriphat-PAGE indicates that in higher plants an oligomeric structure of the PS I entity exists in vitro.  相似文献   

18.
The heterodyned two-dimensional (2D) IR spectra and equilibrium dynamics of the N-H stretching motion of DCONHD in deuterated formamide, DCOND(2), were studied with 80 fs pulses at 3 microm. The time evolution of the heterodyned 2D IR spectra, pump-probe spectra, and photon echo peak shift demonstrate that interstate dynamics is occurring by relaxation of the original N-H excitation. The N-H vibrational frequency correlation function can be expressed as a sum of three exponentials with correlation times 0.24 ps, 0.8 ps, and 11 ps. The intermediate component is attributed to motions of the N-Hcdots, three dots, centeredO unit involving only slight angular variations of the N-H bond. The slow component is attributed to the structure breaking and making. The anisotropy decay confirmed that the significant angular N-H bond motion occurs on the 11 ps time scale. The fast component, which is the least well determined, might correspond to the modulation of the H-bond distance without angular motion. The correlation coefficient between the pumped and relaxed state distributions was +0.51, implying that the excited state phase memory is only slightly diminished by the relaxation of the N-H excitation. The relaxed modes are concluded to be local to the driven N-H mode.  相似文献   

19.
Cytochrome c oxidase, the key bioenergetic protein, was studied by femtosecond absorption spectroscopy. Time-resolved spectral characteristics of the difference spectra recorded in the timescale from 80 fs to 20 ps were analyzed. Electronic relaxation of the excitation energy in heme a occurs in three successive steps. After completion of these steps, heme a is in the excited vibrational state of the ground state. Vibrational relaxation, cooling of the heme, occurs for several picoseconds.  相似文献   

20.
Anti-Stokes Raman scattering is used to monitor vibrational energy redistribution in the ambient temperature liquids nitromethane (NM-h3) and perdeuterated nitromethane (NM-d3) after ultrafast IR excitation of either the symmetric or asymmetric CH- or CD-stretch transitions. The instantaneous populations of most of the fifteen NM vibrations are determined with good accuracy, and a global fitting procedure with a master equation is used to fit all the data. The pump pulses excite not only CH- or CD-stretches but also certain combinations of bending and nitro stretching fundamentals. The coupled vibrations that comprise the initial state are revealed via the instantaneous rise of the anti-Stokes transients associated with each vibrational fundamental. In contrast to many other polyatomic liquids studied previously, there is little energy exchange among the CH-stretch (or CD-stretch) excitations, which is attributed to the nearly free rotation of the methyl group in NM. The vibrational cooling process, which is the multistep return to a thermalized state, occurs in three stages in both NM-h3 and NM-d3. In the first stage, the parent CH- or CD-stretch decays in a few picoseconds, exciting all lower-energy vibrations. In the second stage, the midrange vibrations decay in 10-15 ps, exciting the lower-energy vibrations. In the third stage, these lower-energy vibrations decay into the bath in tens of picoseconds. The initial excitations are thermalized in approximately 150 ps in NM-h3 and there is little dependence on which CH-stretch is excited. VC is somewhat faster in NM-d3 with more dependence on the initial CD-stretch, taking approximately 100 ps with symmetric CD-stretch excitation and approximately 120 ps with asymmetric CD-stretch excitation. Comparison is made with earlier nonequilibrium molecular dynamics simulations of VC [Kabadi, V. N.; Rice, B. M. Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane. J. Phys. Chem. A 2004, 108, 532-540]. The simulations do a good job of reproducing the observed VC process and in addition they predicted the slow interconversion among CH-stretch excitations and the slower relaxation of the asymmetric CH-stretch now observed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号