首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Not a dimer but a monomer was found in the X-ray structure analysis of the complex “trans-[{FeCl(depe)2}2(µ-N2)](BPh4)2” (depe=Et2PCH2CH2PEt2). The complexes [FeXN2(depe)2]BPh4 (X=Cl, Br; structure of the cation for X=Cl shown on the right) are much less stable than the analogous hydride compounds and undergo N2 exchange at room temperature even in the solid state.  相似文献   

5.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVIII. Syntheses and Structures of [{η2tBu2P–P=P–PtBu2}Pt(PR3)2] tBu2P–P=P(Me)tBu2 reacts with [{η2‐C2H4} · Pt(PR3)2] as well as with [{η2tBu2P–P}Pt(PR3)2] yielding [{η2tBu2P–P=P–PtBu2}Pt(PR3)2]; PR3 = PMe3 3 a , PEtPh2 3 b , 1/2 dppe 3 c , PPh3 3 d , P(p‐Tol)3 3 e . All compounds are characterized by 1H and 31P NMR spectra, for 3 b and 3 d also crystal structure determinations were performed. 3 b crystallizes in the triclinic space group P1 (No. 2) with a = 1212.58(7), b = 1430.74(8), c = 1629.34(11) pm, α = 77.321(6), β = 70.469(5), γ = 87.312(6)°. 3 d crystallizes in the triclinic space group P1 (No. 2) with a = 1122.60(9), b = 1355.88(11), c = 2025.11(14) pm, α = 83.824(9), β = 82.498(9), γ = 67.214(8)°.  相似文献   

6.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

7.
New Research of Reaction Behaviour of Triorganylcyclotriphosphines. The Crystal Structures of [(PPh3)2Pt(PtBu)3], [(PPh3)2Pd(PtBu)2], [(CO)4Cr{(PiPr)3}2], [RhCl(PPh3)(PtBu)3], [(NiCO)62-CO)3{(PtBu)2}2], and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] By the reaction of triorganylcyclotriphosphines with transition metal complexes single- and polynuclear compounds are formed, in which the cyclophosphines are bonded in different ways to the metal, the ring either preserving structure or under going ring opening. Depending on the reaction conditions the following compounds can be characterized: [(PPh3)2Pt(PtBu)3] ( 1 ), [(PPh3)2Pd(PtBu)2] ( 2 ), [(CO)4Cr{(PiPr)3}2] ( 3 ), [RhCl(PPh3)(PtBu)3] ( 4 ), [(NiCO)62-CO)3{(PtBu)2}2] ( 5 ) and [(CpFeCO)2(μ-CO)(μ-PHtBu)]+ · [FeCl3(thf)] ( 6 ). The structures of 1 – 6 were obtained by X-ray single crystal structure analysis ( 1 : space group P21/n (No. 14), Z = 4, a = 1279.6(3) pm, b = 1733.1(4) pm, c = 2079.1(4) pm, β = 90.20(3)°; 2 : space group P21/c (No. 14), Z = 4, a = 1053.3(2) pm, b = 2085.2(4) pm, c = 1855.7(4) pm, β = 98.77(3)°; 3 : space group P 1 (No. 2), Z = 2, a = 1022.6(2) pm, b = 1026.4(2) pm, c = 1706.0(3) pm, α = 82.36(3)°, β = 86.10(3)°, γ = 64.40(3)°; 4 : space group P 1 (No. 2), Z = 2, a = 980.2(2) pm, b = 1309.5(3) pm, c = 1573.4(3) pm, α = 99.09(3)°, β = 99.46(3)°, γ= 111.87(3)°; 5 : space group P21/c (No. 14), Z = 4, a = 1804.0(5) pm, b = 2261.2(6) pm, c = 1830.1(7) pm, β = 96.99(3)°; 6 : space group P21/c (No. 14), Z = 4, a = 943.2(3) pm, b = 2510.6(7) pm, c = 1325.1(6) pm, β = 98.21(3)°).  相似文献   

8.
9.
tBu2P–PLi–PtBu2 · 2THF reacts with [(R3P)2MCl2] (M = Pt, Pd, Ni; R3P = Et3P, pTol3P, Ph2EtP, iPr3P) to yield isomers of [(1,2‐η‐tBu2P=P–PtBu2)M(PR3)Cl], in which the tBu2P–P–PtBu2 ligand adopts the arrangement of a side‐on bonded 1,1‐di‐tert‐butyl‐2‐(di‐tert‐butylphosphanyl)diphosphenium cation. tBu2P–PLi–P(NEt2)2 · 2THF reacts with [(R3P)2MCl2] but does not form complexes with a tBu2P–P–P(NEt2)2 moiety, however, splitting of a P–P(NEt2)2 bond of the parent triphosphane takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号