首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
3.
4.
5.
6.
Polymer‐based nanodiscs are valuable tools in biomedical research that can offer a detergent‐free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6 kDa SMA‐based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymer‐based nanodiscs are characterized by light scattering, NMR, FT‐IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to sub‐micrometer diameter, can be produced by varying the lipid‐to‐polymer ratio. The small‐size nanodiscs (up to ca. 30 nm diameter) can be used for solution NMR spectroscopy studies whereas the magnetic‐alignment of macro‐nanodiscs (diameter of > ca. 40 nm) can be exploited for solid‐state NMR studies on membrane proteins.  相似文献   

7.
8.
9.
The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color‐encoded IPC fibers were also obtained based on the co‐assembly of DNA, histone proteins, and blue‐, green‐, or red‐ (RGB‐) emissive CCPs by tuning the fluorescence resonance energy‐transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP‐coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi‐colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering.  相似文献   

10.
11.
The crystallization of a di‐azido‐α‐cyclodextrin revealed a polymeric self‐assembly involving a variety of azido‐type interactions. The crystal arrangement relies on the cooperativity of a primary azido inclusion, a secondary azido–azido interaction involving an unprecedented distribution of canonical forms, and a tertiary azido–groove interaction. The second azido group brings in a major contribution to the supramolecular structure illustrating the benefit of a difunctionalization for the generation of hierarchy.  相似文献   

12.
The rational construction of covalent or noncovalent organic two‐dimensional nanosheets is a fascinating target because of their promising applications in electronics, membrane technology, catalysis, sensing, and energy technologies. Herein, a large‐area (square millimeters) and free‐standing 2D supramolecular polymer (2DSP) single‐layer sheet (0.7–0.9 nm in thickness), comprising triphenylene‐fused nickel bis(dithiolene) complexes has been readily prepared by using the Langmuir–Blodgett method. Such 2DSPs exhibit excellent electrocatalytic activities for hydrogen generation from water with a Tafel slope of 80.5 mV decade−1 and an overpotential of 333 mV at 10 mA cm−2, which are superior to that of recently reported carbon nanotube supported molecular catalysts and heteroatom‐doped graphene catalysts. This work is promising for the development of novel free‐standing organic 2D materials for energy technologies.  相似文献   

13.
14.
15.
Despite a growing interest in two‐dimensional polymers, their rational synthesis remains a challenge. The solution‐phase synthesis of a two‐dimensional polymer is reported. A DNA‐based monomer self‐assembles into a supramolecular network, which is further converted into the covalently linked two‐dimensional polymer by anthracene dimerization. The polymers appear as uniform monolayers, as shown by AFM and TEM imaging. Furthermore, they exhibit a pronounced solvent responsivity. The results demonstrate the value of DNA‐controlled self‐assembly for the formation of two‐dimensional polymers in solution.  相似文献   

16.
17.
18.
Repeatable topological transformation of polymers for the modulation of material functions is a challenge. We have developed a method for repeatedly resetting a cyclic macromolecular architecture to a linear architecture by photostimulation, namely, topology‐reset execution (T‐rex) based on the photochemistry of hexaarylbiimidazoles (HABIs). We synthesized cyclic poly(dimethylsiloxane)s (PDMSs) of various ring sizes with HABIs linked in the chains. UV irradiation of the cyclic PDMSs produced telechelic linear PDMSs with triphenylimidazolyl radical (TPIR) end groups. After termination of UV irradiation, end‐to‐end recyclization occurred by the recoupling of TPIRs. The cyclic PDMSs also responded to ultrasound, which decreased their molecular weight (MW) by site‐specific cleavage of in‐chain HABI moieties, and we are able to reset the MWs by subsequent phototriggered T‐rex. Furthermore, T‐rex enabled solvent‐free switching of the rheological properties of the materials while retaining the liquid character of PDMS.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号