首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, I provide a personal perspective on high-resolution multipass ion mobility spectrometry-mass spectrometry (IMS-MS), with a specific emphasis on cyclic (cIMS) and structures for lossless ion manipulations (SLIM IMS)-based separations. My overarching goal for this perspective was to detail what I believe will be the key important areas in which IMS-MS will help shape the bioanalytical community and especially omics-based research.  相似文献   

2.
The negative ion fast atom bombardment (NIFAB) mass spectra of mono-,di-saccharidesand glycosides using phenylboronic acid (PBA) as reagent have been studied.In the ion source,PBAreacts stereospecifically with the molecules containing cis-vicinal glycols to form characteristic ions,from which the stereo-isomers of saccharides can be definitely distinguished.Disaccharides and glyco-sides with β-glycosidic linkage seem to be unfavorabale to react with PBA,therefore,by comparison ofthe abundances of the characteristic ions,the configuration of the glycosidic linkage in these compoundsmay be inferred.  相似文献   

3.
An analytical method based on solid-phase extraction followed by liquid chromatography tandem mass spectrometry with an ion trap analyser was developed and validated for the quantification of a series of pharmaceutical compounds with distinct physical–chemical characteristics in estuarine water samples. Method detection limits were between 0.03 and 16.4 ng/L. The sensitivity and the accuracy obtained associated with the inherent confirmatory potential of ion trap tandem mass spectrometry (IT-MS/MS) validates its success as an environmental analysis tool. Two MS/MS transitions were used to confirm compound identity. Almost all pharmaceuticals were detected at ng/L level in at least one sampling site of the Douro River estuary, Portugal.  相似文献   

4.
Investigation of acetylspiramycin (ASPM) and its related substances was carried out using a reversed-phase liquid chromatography/tandem mass spectrometry method. The identification of impurities in the ASPM complex was performed with a quadrupole ion trap mass spectrometer, with an electrospray ionization (ESI) source in the positive ion mode which provides MSn capability. A total of 83 compounds were characterized in commercial samples, among which 31 impurities that had never been reported and 31 partially characterized impurities were deduced using the collision-induced dissociation (CID) spectra of major ASPM components as templates. Most of the major impurities arise from the starting materials and the synthesis process. This work provides very useful information for quality control of ASPM and evaluation of its synthesis process.  相似文献   

5.
6.
For more than three decades, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) has been used for elemental depth profiling. In recent years, cluster primary ion sources (principally, C60+, Bin+, and Aun+) have become widely available, and they can greatly enhance the signal intensity of molecular ions (10–1000 times). Understanding the performance of cluster ion analysis beams used in elemental depth profiling can greatly assist normal ToF‐SIMS users in choosing the optimal analysis beam for depth profiling work. Presently, however, the experimental data are lacking, and such choices are difficult to make. In this paper, hydrogen and deuterium depth profiling were studied using six different analysis beams—25 keV Bi+, Bi3+, Bi5+, 50 keV Bi32+, 10 keV C60+, and 20 keV C602+. The effort shows that cluster primary ions do enhance H? and D? yields, but the enhancement is only about 1.5–4.0 times when compared to atomic Bi+ ions. Because the currents of atomic ion analysis beams are much stronger than the currents of cluster ion analysis beams for most commercial ToF‐SIMS instruments, the atomic ion analysis beams can provide the strongest H? and D? signal intensities, and may be the best choices for hydrogen and deuterium depth profiling. In addition, two representative nuclides, 30Si and 18O, were also studied and yielded results similar to those of H? and D?. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Diosmin is a flavonoid often administered in the treatment of chronic venous insufficiency, hemorrhoids, and related affections. Diosmin is rapidly hydrolized in the intestine to its aglicone, diosmetin, which is further metabolized to conjugates. In this study, the development and validations of three new methods for the determination of diosmetin, free and after enzymatic deconjugation, and of its potential glucuronide metabolites, diosmetin-3-O-glucuronide, diosmetin-7-O-glucuronide, and diosmetin-3,7-O-glucuronide from human plasma and urine are presented. First, the quantification of diosmetin, free and after deconjugation, was carried out by high-performance liquid chromatography coupled with tandem mass spectrometry, on an Ascentis RP-Amide column (150?×?2.1 mm, 5 μm), in reversed-phase conditions, after enzymatic digestion. Then glucuronide metabolites from plasma were separated by micro-liquid chromatography coupled with tandem mass spectrometry on a HALO C18 (50?×?0.3 mm, 2.7 μm, 90 Å) column, after solid-phase extraction. Finally, glucuronides from urine were measured using a Discovery HSF5 (100?×?2.1 mm, 5 μm) column, after simple dilution with mobile phase. The methods were validated by assessing linearity, accuracy, precision, low limit of quantification, selectivity, extraction recovery, stability, and matrix effects; results in agreement with regulatory (Food and Drug Administration and European Medicines Agency) guidelines acceptance criteria were obtained in all cases. The methods were applied to a pharmacokinetic study with diosmin (450 mg orally administered tablets). The mean C max of diosmetin in plasma was 6,049.3?±?5,548.6 pg/mL. A very good correlation between measured diosmetin and glucuronide metabolites concentrations was obtained. Diosmetin-3-O-glucuronide was identified as a major circulating metabolite of diosmetin in plasma and in urine, and this finding was confirmed by supplementary experiments with differential ion-mobility mass spectrometry.  相似文献   

9.
The liquid chromatography–mass spectrometry (LC-MS) analysis of complex samples such as biological fluid extracts is widespread when searching for new biomarkers as in metabolomics. The success of this hyphenation resides in the orthogonality of both separation techniques. However, there are frequent cases where compounds are co-eluting and the resolving power of mass spectrometry (MS) is not sufficient (e.g., isobaric compounds and interfering isotopic clusters). Different strategies are discussed to solve these cases and a mixture of eight compounds (i.e., bromazepam, chlorprothixene, clonapzepam, fendiline, flusilazol, oxfendazole, oxycodone, and pamaquine) with identical nominal mass (i.e., m/z 316) is taken to illustrate them. Among the different approaches, high-resolution mass spectrometry or liquid chromatography (i.e., UHPLC) can easily separate these compounds. Another technique, mostly used with low resolving power MS analyzers, is differential ion mobility spectrometry (DMS), where analytes are gas-phase separated according to their size-to-charge ratio. Detailed investigations of the addition of different polar modifiers (i.e., methanol, ethanol, and isopropanol) into the transport gas (nitrogen) to enhance the peak capacity of the technique were carried out. Finally, a complex urine sample fortified with 36 compounds of various chemical properties was analyzed by real-time 2D separation LC×DMS-MS(/MS). The addition of this orthogonal gas-phase separation technique in the LC-MS(/MS) hyphenation greatly improved data quality by resolving composite MS/MS spectra, which is mandatory in metabolomics when performing database generation and search.  相似文献   

10.
The feasibility of a microfluidic-based liquid chromatography-electrospray ionization/mass spectrometric system (HPLC-Chip/ESI/MS) was studied and compared to a conventional narrow-bore liquid chromatography-electrospray ionization/mass spectrometric (LC-ESI/MS) system for the analysis of steroids. The limits of detection (LODs) for oxime derivatized steroids, expressed as concentrations, were slightly higher with the HPLC-Chip/MS system (50–300 pM) using an injection volume of 0.5 μL than with the conventional LC-ESI/MS (10–150 pM) using an injection volume of 40 μL. However, when the LODs are expressed as injected amounts, the sensitivity of the HPLC-Chip/MS system was about 50 times higher than with the conventional LC-ESI/MS system. The results indicate that the use of HPLC-Chip/MS system is clearly advantageous only in the analysis of low-volume samples. Both methods showed good linearity and good quantitative and chromatographic repeatability. In addition to the instrument comparisons with oxime derivatized steroids, the feasibility of the HPLC-Chip/MS system in the analysis of non-derivatized and oxime derivatized steroids was compared. The HPLC-Chip/MS method developed for non-derivatized steroids was also applied to the quantitative analysis of 15 mouse plasma samples.  相似文献   

11.
Oxaliplatin is an important anti-cancer drug that has been approved for the treatment of colorectal cancer. It is known that oxaliplatin, like other Pt-based drugs, interacts with DNA to form cytotoxic Pt-DNA adducts that disrupt important biological processes such as DNA replication and protein synthesis. Linear ion trap electrospray ionisation mass spectrometry (ESI-MS) was employed to study the interaction of oxaliplatin with DNA nucleobases. It was shown that oxaliplatin formed adducts with all four DNA nucleobases when present individually and in combination in solution. Multiple-stage tandem mass spectrometry (MSn) enabled the fragmentation pathways of each adduct to be established. In addition, proposed structures for each product ion were obtained from the MS data. When all four bases were present together with the drug at near-equal molar concentrations, adducts containing predominantly adenine and guanine were formed, confirming that the drug preferentially binds to these nucleobases. A large molar excess of drug was required to ensure the formation of cytosine and thymine adducts in the presence of adenine and guanine. Even with a large excess of oxaliplatin, only mono-adducts of these nucleobases were observed when all four nucleobases were present. Figure Schematic of a linear ion trap mass spectrometer being used to isolate the diadduct of guanine with oxaliplatin showing the characteristic isotope pattern due to 194Pt, 195Pt and 196Pt.  相似文献   

12.
13.
Theprocessofmembraneinsertionofthetoxicproteincanbedividedintotwosteps:absorptionandinsertion.Theproteinmoleculesfirstinteractwiththemembranesurfaceandbecomeadsorbedontothemembranethroughstaticelectricity.Theconformationofthetoxicproteinwillchangeunde…  相似文献   

14.
Amyloid-β (Aβ) in human plasma was detected and quantified by an antibody-free method, selected reaction monitoring mass spectrometry (SRM-MS) in the current study. Due to its low abundance, SRM-based quantification in 10 μL plasma was a challenge. Prior to SRM analysis, human plasma proteins as a whole were digested by trypsin and high pH reversed-phase liquid chromatography (RPLC) was used to fractionate the tryptic digests and to collect peptides, Aβ1–5, Aβ6–16, Aβ17–28 and Aβ29–40(42) of either Aβ1–40 or Aβ1–42. Among those peptides, Aβ17–28 was selected as a surrogate to measure the total Aβ level. Human plasma samples obtained from triplicate sample preparations were analyzed, obtaining 4.20 ng mL−1 with a CV of 25.3%. Triplicate measurements for each sample preparation showed CV of <5%. Limit of quantification was obtained as 132 pM, which corresponded to 570 pg mL−1 of Aβ1–40. Until now, most quantitative measurements of Aβ in plasma or cerebrospinal fluid have required antibody-based immunoassays. Since quantification of Aβ by immunoassays is highly dependent on the extent of epitope exposure due to aggregation or plasma protein binding, it is difficult to accurately measure the actual concentration of Aβ in plasma. Our diagnostic method based on SRM using a surrogate peptide of Aβ is promising in that actual amounts of total Aβ can be measured regardless of the conformational status of the biomarker.  相似文献   

15.
Approaches to separation and characterization of ions based on their mobilities in gases date back to the 1960s. Conventional ion mobility spectrometry (IMS) measures the absolute mobility, and field asymmetric waveform IMS (FAIMS) exploits the difference between mobilities at high and low electric fields. However, in all previous IMS and FAIMS experiments ions experienced an essentially free rotation; thus the separation was based on the orientationally averaged cross-sections Omega(avg) between ions and buffer gas molecules. Virtually all large ions are permanent electric dipoles that will be oriented by a sufficiently strong electric field. Under typical FAIMS conditions this will occur for dipole moments >400 D, found for many macroions including most proteins above approximately 30 kDa. Mobilities of aligned dipoles depend on directional cross-sections Omega(dir) (rather than Omega(avg)), which should have a major effect on FAIMS separation parameters. Here we report the FAIMS behavior of electrospray-ionization-generated ions for 10 proteins up to approximately 70 kDa. Those above 29 kDa exhibit a strong increase of mobility at high field, which is consistent with predicted ion dipole alignment. This effect expands the useful FAIMS separation power by an order of magnitude, allowing separation of up to approximately 10(2) distinct protein conformers and potentially revealing information about Omega(dir) and ion dipole moment that is of utility for structural characterization. Possible approaches to extending dipole alignment to smaller ions are discussed.  相似文献   

16.
Ion bombardment of pure water ice by Au+ monoatomic and Au3 + and C60 + polyatomic projectiles results in the emission of two series of water cluster ions-(H2O)n + and (H2O)nH+-with n ranging from 1 to >40. The cluster ion yields are very significantly higher under polyatomic ion bombardment than when using an Au+ primary ion. The yield of the protonated water species (H2O)nH+ is found to be enhanced by increasing ion fluence. C60 + bombardment results in a very dramatic increase in the (H2O)nH+ yield and decrease in the yield of (H2O)n +. Au3 + also significantly increased the yield of protonated species relative to the non-protonated but to a lesser extent than C60 +. Bombardment by Au+ also increased the yield of protonated species but to a very much smaller extent. The hypothesis that the protonated species may enhance the yield of [M+H]+ from solute molecules in solution has been investigated using two amino acids, alanine and arginine, and a nucleic base, adenine. The data suggest that the protons produced by the sputtering of water ice are depleted in the presence of these solutes and concurrently the yields of solute-related [M+H]+ and immonium secondary ions are greatly enhanced. These yield enhancements are analysed in the light of other possible contributors such as increased rates of sputtering under polyatomic beams and increased secondary ion yields as a consequence of solute dispersion. It is concluded that enhanced proton attachment is occurring in polyatomic sputtered frozen aqueous solutions.  相似文献   

17.
18.
The time-honored convention of concentrating aqueous samples by solid-phase extraction (SPE) is being challenged by the increasingly widespread use of large-volume injection (LVI) liquid chromatography–mass spectrometry (LC–MS) for the determination of traces of polar organic contaminants in environmental samples. Although different LVI approaches have been proposed over the last 40 years, the simplest and most popular way of performing LVI is known as single-column LVI (SC-LVI), in which a large-volume of an aqueous sample is directly injected into an analytical column. For the purposes of this critical review, LVI is defined as an injected sample volume that is ≥10% of the void volume of the analytical column. Compared with other techniques, SC-LVI is easier to set up, because it requires only small hardware modifications to existing autosamplers and, thus, it will be the main focus of this review. Although not new, SC-LVI is gaining acceptance and the approach is emerging as a technique that will render SPE nearly obsolete for many environmental applications. In this review, we discuss: the history and development of various forms of LVI; the critical factors that must be considered when creating and optimizing SC-LVI methods; and typical applications that demonstrate the range of environmental matrices to which LVI is applicable, for example drinking water, groundwater, and surface water including seawater and wastewater. Furthermore, we indicate direction and areas that must be addressed to fully delineate the limits of SC-LVI.  相似文献   

19.
A rapid and sensitive method for the speciation and quantification of glucosinolates in rapeseed is described. The method combines liquid chromatography (LC) with ion trap mass spectrometry (ITMS) detection. Electrospray ionization (ESI) has been chosen as the ionization technique for the on-line coupling of LC with ITMS. Glucosinolates are extracted from different rapeseeds with MeOH and the extracts are cleaned-up by solid phase extraction with Florisil cartridges. Aqueous extracts are injected into LC system coupled to an ITMS, leading to accurately quantify eight of the most important glucosinolates in rapeseed, by MS2 mode and confirming their structure by MS3 acquisition. All the glucosinolates found in rapeseeds provide good signals corresponding to the deprotonated precursor ion [M-H]. The method is reliable and reproducible, and detection limits range from 0.5 nmol g−1 to 3.7 nmol g−1 when 200 mg of dried seeds of certified reference material are analyzed. Within-day and between-day RSD percentages range between 2.4–14.1% and 3.9–16.9%, respectively. The LC-ESI-ITMS-MS method described here allows for a rapid assessment of these metabolites in rapeseed without a desulfatation step. The overall process has been successfully applied to identify and quantify glucosinolates in rapeseed samples.  相似文献   

20.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is frequently used to identify and quantify drugs in human biological samples due to the high selectivity and sensitivity of this technique. However, ion suppression effects caused by co-eluting compounds: drugs, metabolites, matrix components, impurities and degradation products, are a major concern. Stable isotope labelled internal standards (SIL ISs), usually deuterium ((2)H) labelled, are often used to compensate for these effects. In many LC separations the retention times of (2)H labelled ISs and their analogues will differ. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is increasingly being used for bio-analysis. With the better chromatographic resolution provided with sub 2 μm particles, larger separation between analytes and their (2)H labelled analogues can be expected, which might reduce the benefits of the SIL IS. There is a greater difference in physico-chemical properties between hydrogen isotopes than between isotopes of other elements. (13)C, (15)N and (18)O labelled ISs are more similar to their analytes than (2)H labelled ISs and thereby expected to behave more similarly in chromatographic separations. In this study we have investigated the use of (13)C and (2)H labelled ISs for the determination of amphetamine and methamphetamine by UPLC-MS/MS. The (13)C labelled ISs were co eluting with their analytes under different chromatographic conditions while the (2)H labelled ISs and their analytes were slightly separated. An improved ability to compensate for ion suppression effects were observed when the (13)C labelled ISs were used. Furthermore, an UPLC-MS/MS method for determination of amphetamine and methamphetamine in urine using (13)C labelled ISs has been developed and validated. Unfortunately, there are few (13)C labelled ISs commercial available today. If more (13)C labelled ISs become commercial available they may well be the coming solution to minimize ion suppression/enhancement effects in LC-MS/MS analyses of drugs in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号