首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical characteristics of a plasma arc affect the stability of the keyhole and weld pool directly during keyhole plasma arc welding(KPAW). There will be significant change for these characteristics because of the interaction between the keyhole weld pool and plasma arc after penetration. Therefore, in order to obtain the temperature field, flow field, and arc pressure of a plasma arc under the reaction of the keyhole, the physical model of a plasma arc with a pre-set keyhole was established. In addition, the tungsten and base metal were established into the calculated domain, which can reflect the effect of plasma arc to weld pool further. Based on magneto hydrodynamics and Maxwell equations, a two-dimensional steady state mathematical model was established. Considering the heat production of anode and cathode, the distribution of temperature field, flow field, welding current density, and plasma arc pressure were solved out by the finite difference method. From the calculated results, it is found that the plasma arc was compressed a second time by the keyhole. This additional constraint results in an obvious rise of the plasma arc pressure and flow velocity at the minimum diameter place of the keyhole, while the temperature field is impacted slightly. Finally, the observational and metallographic experiments are conducted, and the shapes of plasma arc and fusion line agree with the simulated results generally.  相似文献   

2.
电弧放电等离子体诱导激波的计算   总被引:2,自引:0,他引:2  
程钰锋  聂万胜 《计算物理》2012,29(2):213-220
基于电弧放电物理过程,分析气动激励机理,建立用于电弧放电等离子体诱导激波数值模拟的爆炸丝传热模型.主要结论有:电弧放电等离子体气动激励的主要机理是热等离子体的热阻塞效应,热电弧放电对于超声速来流而言就像-个具有-定斜坡角度的虚拟突起;理论分析只适用于纵坐标较小的阶段;当传热的功率设为放电功率的10%时,本文所建立的模型能够用于电弧放电等离子体诱导激波的仿真研究;等离子体虚拟斜坡角度及其诱导激波角都随来流总压和速度的增大而减小,随着放电功率的增大而增大,在总压、速度和放电功率较小的阶段这种变化较明显,在总压、速度和放电功率较大的阶段这种变化较缓慢.  相似文献   

3.
直流纯氩层流等离子体射流的长度变化   总被引:9,自引:0,他引:9  
采用主要由阴极、阳极以及介于阴极和阳极之间的中间段组成的直流非转移式电弧等离子体发生器,在大气压条件下,比较系统地研究了纯氩层流等离子体射流的长度随着弧电流、气体流量以及发生器结构而变化的规律。结果表明:层流射流的长度随弧电流和工作气流量的增加而增长;层流向湍流流动转变的临界气流量值随弧电流增大而提高;在发生器的伏安特性呈大梯度变化的情况下,射流长度随弧电流的变化幅度增大。  相似文献   

4.
Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure <10-2 Pa), with an externally heated cathode and a consumable hot evaporating anode. With various anode materials like chromium or copper, and electrode separations between 0.5 and 3 mm, the nonself-sustained discharge operates with DC arc currents in the range of 220 A. The waveform of the arc voltage is strongly influenced by the magnetic field of the cathode heating current, and arc voltages between a minimum of 3 V and a maximum exceeding 100 V have been observed. The voltage-current characteristics (VCC) and the influence of the electrode separation have been measured separately for the minimum and the maximum of the arc voltages and show a different behavior. The metal plasma expands into the ambient vacuum toward the walls of the vacuum vessel and offers a macroparticle free deposition source of thin films. The arc voltage can be varied by external manipulations of the arc discharge, and the mean ion energy of the expanding metal plasma shows a linear dependence of the mean arc voltage  相似文献   

5.
Plasma jets from conventional non‐transferred arc plasma devices are usually operated in turbulent flows at atmospheric pressure. In this paper, a novel non‐transferred arc plasma device with multiple cathodes is introduced to produce long, laminar plasma jets at atmospheric pressure. A pure helium atmosphere is used to produce a laminar plasma jet with a maximum length of >60 cm. The influence of gas components, arc currents, anode nozzle diameter, and gas flow rate on the jet characteristics is experimentally studied. The results reveal that the length of the plasma jet increases with increasing helium content and arc current but decreases with increasing nozzle diameter. As the gas flow rate increases, the length of the plasma jet initially increases and then decreases. Accordingly, the plasma jet is transformed from a laminar state to a transitional state and finally to a turbulent state. Furthermore, the anode arc root behaviours corresponding to different plasma jet flows are studied. In conclusion, the multiple stationary arc roots that exist on the anode just inside the nozzle entrance are favourable for the generation of a laminar plasma jet in this device.  相似文献   

6.
采用原子发射光谱仪研究低压直流电弧热喷涂等离子体射流的特性。利用Stark展宽法采集Hβ谱线,使用其Δλ1/2来计算等离子射流中的电子密度,研究了氢气流量、输入功率和探测距离对等离子体射流中电子密度的影响。使用Saha方程计算热等离子体的电离程度,研究了功率/氢气流量与等离子体电离程度的关系。结果表明:电子密度和电离程度随着电流强度的增大而增加;氢气流量增加可以明显提高等离子体射流的能量,但对电离程度影响不大。  相似文献   

7.
The plasma properties of a medium-vacuum nitrogen arc discharge from a titanium cathode were studied. The arc chamber use was 400 mm in diameter and 600 mm in length. The cathode diameter and thickness were 64 and 25 mm, respectively. The experimental conditions are given as follows: pressure range=1×10-3~2×10-1 torr; N2 gas flow rate=6 ml/min; arc current=50 A. Electric probe characteristics are measured as a function of pressure and distance from the cathode surface. The analytical results obtained show that the electron energy distribution takes 1-Mx at pressures above 1×10-2 torr but 2-Mx at pressures under 4×10-2 torr and that the electron density has a maximum value at a certain pressure. The Ti+, Ti++, and N +2 ion spectral intensities are measured as a function of pressure and distance from the cathode surface. On comparison of these results and the electron density, the Ti+ spectral intensity turns out to be proportional to that of the electron density. This suggests that the major ion in the plasma volume is of the Ti+ species  相似文献   

8.
采用二维轴对称双温度化学非平衡(2T-NCE)模型,模拟了带有水冷约束管的大气压直流电弧氩等离子体发生器.得出了不同工作参数下等离子体中电子温度、重粒子温度的变化关系,表明直流电弧等离子体有很强的非平衡特性,且变化规律十分明显.  相似文献   

9.
A systematic investigation of spectral and voltage-current (U-I) characteristics of a DC arc plasma was performed. The vertical, argon and wall stabilized DC arc plasma was seeded by an easily ionizable element (EIE), potassium, in a wide range of concentrations. It was found that different arc currents and potassium contents in the plasma have considerable influence on the plasma properties. A lower potassium content (< 10 g/l of KCl in solution) introduced into the arc at lower currents (<6A) causes an increase in arc voltage and a change in the arc spectrum (intensity of lines), while at higher arc currents (>6A) it causes no change in the electrical characteristics, but a further change in the intensity of the arc spectrum. Higher potassium concentrations, >20 g/l of KCl, increase the arc voltage at higher currents (>6A). There is a critical quantity of potassium in the plasma which suppresses high energy processes (ionization, excitation…) for a fixed arc current, while spectral composition and lateral distribution of the residual emitted spectra become essentially changed. Amounts of potassium above critical do not cause further changes in the plasma spectral composition nor in the I-U characteristic, except in the spectral line intensities.  相似文献   

10.
Test results for model circuit breakers operating at high current levels and with large diameter nozzles show evidence of pronounced pressure transients although the circuit breaker nozzle is not severely blocked. The magnitude and duration of these transients are sufficient to affect the arc properties and hence influence arc control during the peak current phase and to influence arc extinction at current zero. However, despite their inherent importance there exists only limited information concerning such pressure variations. The purpose of this contribution is to identify the nature and sources of the transients, to establish typical thresholds for the onset of the transients, and to determine the influence of different operating conditions upon the transients. Measurements of pressure and thermal mantle variations are used in conjunction with an electrical analog model of the aerodynamic test facility to show that the pressure transients arise not only from arc generated flow impedance effects but also aerodynamic resonances. The resonant pressure transients are shown to be pronounced during the high current phase even below the thermal blocking threshold. Above the threshold, excitation of negative increment resonance following current peak produces depressed pressures during the current-zero period which may lead to a deterioration in circuit breaker performance. Higher frequency resonances also occur and become more pronounced with electrode wear. Activation of such resonances is symptomatic of axisymmetric arc instabilities which also may cause a deterioration in performance.  相似文献   

11.
The arc discharge plasma actuator (ADPA) has wide application prospects in high‐speed flow control because of its local heating effect and strong disturbance. In this paper, the influence of ambient pressure, which ranges from 3 to 20 kPa, on the performance of a two‐electrode ADPA is investigated by a schlieren system. The duration of the arc heated region, as well as its area, is extracted by image processing. As the ambient pressure increases, different flow field evolutions occur. The duration of the ADPA heated region increases with the ambient pressure. The maximum duration reaches 1185.3 µs at 20 kPa. The velocity of the discharge‐induced blast shock wave first decreases gradually and then remains at 345 m/s for all air pressures. The blast shock wave has a higher velocity at lower pressures when it is freshly produced. A maximum blast shock wave velocity of 582 m/s is observed at the pressure of 7 kPa. The arc heated region is not sensitive to ambient pressure, but the deposited energy from the arc increases when the pressure increases.  相似文献   

12.
Vacuum arc cathode spot grouping and motion in magnetic fields   总被引:1,自引:0,他引:1  
Two of the important vacuum arc phenomena observed when the arc runs in a transverse magnetic field are cathode spot grouping and the cathode spot retrograde motion, i.e., in the anti-Amperian direction. This paper summarizes the main experimental observations and proposes a physical model for spot grouping and spot retrograde motion. The proposed spot motion model take in account the previous theoretical model of the cathode thermal regime and the plasma flow near the cathode surface that is based on two conditions: i) the heat loss in the cathode bulk is relatively small to the heat influx, and ii) the plasma flow in the Knudsen layer is impeded. In the present model, the current per group spot is calculated by assuming that the plasma kinetic pressure is comparable to the self-magnetic pressure in the acceleration region of cathode plasma jet. The model includes equations for the current per spot group, spot velocity dependence on the magnetic field and on the arc current in vacuum, as well as in gas filled arc gap. The calculated currents per spot group and spot velocity increase linearly with the magnetic field and arc current, and this dependencies well agree with previous observations. The cathode spot retrograde motion in short electrode gaps and at atmospheric pressure arcs, and the reversal motion in strong magnetic fields (>1 T) observed by Robson and Engel are discussed. The details of the retrograde motion observed in the last decades including the spot velocity dependence on the electrode gap, roughness, temperature, and material could be understood in the frame of the proposed model.  相似文献   

13.
双钨极耦合电弧数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
王新鑫  樊丁  黄健康  黄勇 《物理学报》2013,62(22):228101-228101
基于流体力学方程组和麦克斯韦方程组, 在合理的边界条件下, 建立了双钨极耦合电弧三维准静态数学模型. 通过对方程组的迭代求解, 获得了不同钨极间距和电弧长度下耦合电弧的温度场、流场、电弧压力和电流密度分布等重要结果, 与已有的实验研究符合良好. 模拟结果表明: 与相同条件下的钨极惰性气体保护焊电弧相比, 双钨极耦合电弧的最高温度和最大等离子流速较低, 阳极表面电弧压力和电流密度峰值明显减小; 钨极间距和弧长对耦合电弧的温度场、流场、电流密度和电弧压力等都具有显著的影响, 且耦合电弧阳极的电弧压力和电流密度分布不能用高斯近似进行描述. 关键词: 耦合电弧 三维模型 数值模拟  相似文献   

14.
15.
A differential laser Doppler system has been used in conjunction with a self-triggered oscillographic raster display system for measuring particle concentrations and flow velocities in a model gas-blast circuit breaker. The flow velocities have been correlated with particle size to enable extrapolation to be made to determine the true plasma flow velocity. The results have been deconvoluted to take account of lateral movements of the arc column. The measurements have been taken with air as the host arcing medium and a flow through a 25-mm-diameter orifice sustained by an upstream pressure of about 7 bar (downstream pressure 1 bar). The arc was sustained by sinusoidal cuffents of peak values 3 and 8 kA and a frequency of 85 Hz. These two currents corresponded to conditions when the model circuit breaker successfully and unsuccessfully interrupted the arc-sustaining current, respectively. The results show that in the case of the 8-kA arc, the flow pattern is severely distorted from that under nonarcing conditions, suggesting that this is a contributory reason for the poorer perfonnance of the model circuit breaker at this higher current level.  相似文献   

16.
等离子体射流产生与特性的实验研究   总被引:1,自引:0,他引:1  
本文报道热等离子体射流产生及射流特性的实验研究结果。采用同一个直流等离子体发生器,工作气体流量小时产生出层流等离子体长射流,射流长度随气体流量或弧电流的增加而明显增加;工作气体流量大时则产生出湍流等离子体短射流,此时射流长度几乎与工作气体流量或弧电流无关;在层流与湍流等离子体射流工况之间,存在一个流动状况不稳定的过渡区,此时等离子体射流的平均长度随气流量的加大而减小,但随弧电流的加大而明显加大。层流等离子体长射流有相当好的刚性。  相似文献   

17.
由于大气压均匀放电等离子体在工业领域具有广泛的应用前景,为了获得大尺寸的大气压均匀等离子体,采用氩气作为工作气体,在大气压空气环境中利用同轴介质阻挡放电点燃了针-板电极间的大气隙(气隙宽度达到5 cm)直流均匀放电。研究发现,同轴介质阻挡放电能够有效降低针-板电极间的击穿电压。该均匀放电由等离子体柱、等离子体羽、阴极暗区和阴极辉区组成。其中等离子体柱和阴极辉区都是连续放电。而等离子体羽不同位置的放电是不同时的。事实上,等离子体羽放电是由从阴极向着等离子体柱移动的发光光层(即等离子体子弹)叠加而成。利用电学方法测量了放电的伏安特性曲线,发现其与低气压正常辉光放电类似,均具有负斜率。采集了放电的发射光谱,发现存在N2第二正带系、氩原子和氧原子谱线。通过Boltzmann plot方法对放电等离子体电子激发温度进行了空间分辨测量,发现等离子体柱的电子激发温度比等离子体羽的电子激发温度低。通过分析放电机制,对以上现象进行了定性解释。这些研究结果对大气压均匀放电等离子体源的研制和工业应用具有重要意义。  相似文献   

18.
A two-dimensional, two-temperature axisymmetric numerical model has been formulated for the flow-affected region and the boundary layer in front of high-intensity electric arc anodes. The plasma flow is laminar, steady, incompressible, and the plasma composition is found from the diffusion equation because chemical nonequilibrium is expected. Computational results are obtained for an atmospheric pressure argon arc considering two different situations: a free-burning electric arc and an arc with a constrictor tube. The solutions indicate two different anode attachments modes-a constricted and a diffuse attachment. It is found that under the conditions considered in the calculations, the gradient-induced current densities become significant at distances in the order of 1 mm from the anode surface. The thermal anode boundary layer is compressed with increasing current. The thickness of the thermal boundary layer for the constricted mode is approximately three times smaller than for the diffuse mode. A reversal of the electric field strength occurs over the entire thickness of the boundary layer in all calculated cases. A satisfactory agreement is reached between the calculated heat flux values and experimental results obtained for a 200-A free-burning electric arc  相似文献   

19.
The transient flow generated by a pulsed, megawatt-level, gas-fed arc with an applied magnetic nozzle has been examined with a new design piezoelectric pressure transducer. Sensor thermal conduction and accelerations have been examined and eliminated in the 500?sec period of plasma flow. Existence of a large magnitude cold gas pressure front of 20?sec duration has been reconfirmed and its relationship to the following plasma flow of about 200?sec duration has been examined for the first time. At a point 30 cm from the arc source, initially near vacuum conditions (typically with an arc current of 11.2 kA and 1 tesla applied magnetic field), a pressure pulse of unionized gas with a magnitude of 104 N/m2 is followed by plasma flows with nearly constant impact pressure of 103 N/m2. Pressure and number density in this plasma region are seen to decrease with applied magnetic field strength. With electron density derived from Thomson scattering measurements (1020 m-3) plasma flow velocities on the order of 5 × 104 m/sec are calculated.  相似文献   

20.
大气压直流氩等离子体射流工作特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
介绍了一种新型大气压直流双阳极等离子喷枪,并对其电特性参数和发射光谱进行了测量.通过对氩等离子体射流的电信号进行时域和频域分析,研究了载气流量和弧电流的变化对射流脉动的影响,结果表明氩等离子体电弧的伏安特性呈上升趋势,射流脉动属于接管模式,电源特性中的交流分量引起的电压波动是影响氩等离子体射流脉动的主要因素. 通过光谱法测量了氩等离子体射流在弧室内和弧室出口的发射光谱,利用玻尔兹曼曲线斜率法计算了射流的激发温度,根据Ar I谱线的斯塔克展宽得到了射流的电子密度,并对等离子体射流满足局域热力学平衡(LTE) 关键词: 等离子喷枪 射流脉动 激发温度 局域热力学平衡  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号