首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated.  相似文献   

2.
C‐Glycosides are carbohydrates that bear a C?C bond to an aglycon at the anomeric center. Due to their high stability towards chemical and enzymatic hydrolysis, these compounds are widely used as carbohydrate mimics in drug development. Herein, we report a general and exclusively β‐selective method for the synthesis of a naturally abundant acyl‐C‐glycosidic structural motif first found in the scleropentaside natural product family. A Corey–Seebach umpolung reaction as the key step in the synthesis of scleropentaside A and analogues enables the β‐selective construction of the anomeric C?C bond starting from unprotected carbohydrates in only four steps. The one‐pot approach is highly atom‐efficient and avoids the use of toxic heavy metals.  相似文献   

3.
Carbohydrates on cell surfaces are information molecules. Although only seven or eight monosaccharides are commonly used as building blocks in mammalian systems, the multifunctionality of these monomers can lead to the assembly of an immense variety of complex structures. Millions of different tetrasaccharide structures, for example, can be constructed from this small number of building blocks, if branching, the stereochemistry of glycosidic linkages, and the modification of hydroxyl and amino groups are taken into consideration. Oligosaccharides therefore represent an effective class of biomolecules that code for a vast amount of information required in various biological recognition processes, such as intercellular communication, signal transduction, cell adhesion, infection, cell differentiation, development and metastasis. The pace of development of pharmaceuticals based on carbohydrates has, however, been slower than that based on other classes of biomolecules. Part of the reason is the lack of technologies for the study of complex carbohydrates. There is no method to amplify oligosaccharides for sequence analysis. There is no machine available for automated synthesis of oligosaccharides. In addition, the possibly poor bioavailability and difficulties in the large-scale synthesis of carbohydrates have undoubtedly contributed to this slow pace. The enzymatic and chemoenzymatic methods, especially those based on aldolases and glycosyltransferases, described here appear to be useful for the synthesis of mono- and oligosaccaharides and related molecules. Further advances in glycobiology will probably lead to the development of new technologies for the study of carbohydrate recognition and for the synthesis of bioactive carbohydrates and mimetics to control the recognition processes.  相似文献   

4.
The combination of vibrational spectroscopy, conducted in a supersonic jet expansion, with computation through molecular mechanics, density functional theory (DFT) and ab initio calculation, has provided a new approach to the conformational and structural assignment of carbohydrates and their molecular complexes. This article reviews the new insights it has provided on the regioselectivity and conformational choice in singly and multiply hydrated monosaccharides. It reveals a systematic pattern of conformational preference and binding site selectivity, driven by the provision of optimal, co-operative hydrogen-bonded networks in the hydrated sugars. Water binding is invariably ’focused’ around the hydroxymethyl group (when present); the bound water molecules (on multiply hydrated mannose) are located exclusively on its hydrophilic face while the hydrophobic face remains ‘dry’; and there is a correlation between the locale of the preferred binding sites and those involved in protein–carbohydrate molecular recognition.  相似文献   

5.
Chemical synthesis of oligosaccharide conjugates is essential for studying the functional relevance of carbohydrates, and this task would be facilitated considerably if reliable methods for the anomeric ligation of unprotected sugars in water were available. Here, a method for the preparation of anomeric glycosyl thiols from complex unprotected mono‐, di‐, and oligosaccharides is presented. By exploiting the neighboring‐group effect of the 2‐acetamido‐group, 1,2‐oxazolines are generated and converted into 1‐glycosyl thioesters through treatment with 1‐thioacids. The unprotected anomeric glycosyl thiolates released in situ were conjugated to Michael acceptors, aliphatic halogenides, and aziridines to furnish versatile glycoconjugates. Conjugation of amino acids and proteins was accomplished using the thiol–ene reaction with terminal olefins. This method gives efficient access to anomeric glycosyl thiols and thiolates, which enables anomeric ligations of complex unprotected glycans in water.  相似文献   

6.
《化学:亚洲杂志》2017,12(18):2471-2479
Dysprosium(III) trifluoromethanesulfonate‐catalyzed per‐O ‐acetylation and regioselective anomeric de‐O ‐acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per‐O ‐acetylation of unprotected sugars by using a near‐stoichiometric amount of acetic anhydride under solvent‐free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de‐O ‐acetylation in methanol resulted in a moderate‐to‐excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi‐one‐pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf)3‐catalyzed glycosylation.  相似文献   

7.
The physical basis of carbohydrate molecular recognition at aromatic protein binding sites is explored by creating molecular complexes between a series of selected monosaccharides and toluene (as a truncated model for phenylalanine). They are formed at low temperatures under molecular beam conditions, and detected and characterized through mass-selected, infrared ion depletion spectroscopy-a strategy which exploits the extraordinary sensitivity of their vibrational signatures to the local hydrogen-bonded environment of their OH groups. The trial set of carbohydrates, alpha- and beta-anomers of glucose, galactose and fucose, reflects ligand fragments in naturally occurring protein-carbohydrate complexes and also allows an investigation of the effect of systematic structural changes, including the shape and extent of 'apolar' patches on the pyranose ring, removal of the OH on the exocyclic hydroxymethyl group, and removal of the aglycon. Bound complexes invariably form, establishing the general existence of intrinsic intermolecular potential minima. In most of the cases explored, comparison between recorded and computed vibrational spectra of the bound and free carbohydrates in the absence of solvent water molecules reveal that dispersion forces involving CH-pi interactions, which promote little if any distortion of the bound carbohydrate, predominate although complexes bound through specific OH-pi hydrogen-bonded interactions have also been identified. Since the complexes form at low temperatures in the absence of water, entropic contributions associated with the reorganization of surrounding water molecules, the essence of the proposed 'hydrophobic interaction', cannot contribute and other modes of binding drive the recognition of sugars by aromatic residues. Excitingly, some of the proposed structures mirror those found in naturally occurring protein-carbohydrate binding sites.  相似文献   

8.
Chemical synthesis of glycoconjugates is essential for studying the biological functions of carbohydrates. We herein report an efficient approach for the stereoselective synthesis of challenging α-linked glycoconjugates via a RhII/chiral phosphoric acid (CPA)-cocatalyzed dynamic kinetic anomeric O-alkylation of sugar-derived lactols via carbenoid insertion to the anomeric OH bond. Notably, we observed excellent anomeric selectivity, excellent diastereoselectivity, broad substrate scope, and high efficiency for this glycosylation reaction by exploring various parameters of the cocatalytic system. DFT calculations suggested that the anomeric selectivity was mainly determined by steric interactions between the C2-carbon of the carbohydrate and the phenyl group of the metal carbenoid, while π/π interactions with the C2−OBn substituent on the carbohydrate substrate play a significant role for diastereoselectivity at the newly generated stereogenic center.  相似文献   

9.
Many carbohydrate compounds undergo electro-oxidation at modest positive potentials at chemically modified electrodes (CMEs) made by adding cobalt phthalocyanine (CoPC) electrocatalyst to a conventional carbon paste mixture. The active carbohydrates which were oxidized at the CME at +0.4 to 0.5 V vs. Ag/AgCl under the very basic pH conditions required, included not only monosaccharides but also oligosaccharides, deoxy sugars, and even simple polyalcohols such as glycerol. When used for carbohydrate detection after liquid chromatography, the CoPC CME yielded detection limits in the 10–50 pmol range. Electrode stability and selectivity was such that no sample preparation other than dilution and particulate filtration was required for carbohydrate determinations in sample matrices including food products and physiological fluids.  相似文献   

10.
[structure: see text] This is the first report on the diastereoselective addition of carbon nucleophiles to vinyl sulfone-modified hex-2-enopyranosides and pent-2-enofuranosides. Nucleophiles add to the C-2 position from a direction opposite to that of the disposition of the anomeric methoxy group. This novel concept of anomeric configuration-directed stereocontrolled carbon-carbon bond formation in vinyl sulfone-modified carbohydrates is general in nature and has been implemented in the synthesis of new hexopyranosyl and pentofuranosyl branched-chain sugars and densely functionalized carbohydrates.  相似文献   

11.
In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon–metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.  相似文献   

12.
Carbohydrates are an extremely complex group of isomeric molecules that have been difficult to analyze in the gas phase by mass spectrometry because (1) precursor ions and product ions to successive stages of MS(n) are frequently mixtures of isomers, and (2) detailed information about the anomeric configuration and location of specific stereochemical variants of monosaccharides within larger molecules has not been possible to obtain in a general way. Herein, it is demonstrated that gas-phase analyses by direct combination of electrospray ionization, ambient pressure ion mobility spectrometry, and time-of-flight mass spectrometry (ESI-APIMS-TOFMS) provides sufficient resolution to separate different anomeric methyl glycosides and to separate different stereoisomeric methyl glycosides having the same anomeric configuration. Reducing sugars were typically resolved into more than one peak, which might represent separation of cyclic species having different anomeric configurations and/or ring forms. The extent of separation, both with methyl glycosides and reducing sugars, was significantly affected by the nature of the drift gas and by the nature of an adducting metal ion or ion complex. The study demonstrated that ESI-APIMS-TOFMS is a rapid and effective analytical technique for the separation of isomeric methyl glycosides and simple sugars, and can be used to differentiate glycosides having different anomeric configurations.  相似文献   

13.
Fluorinated carbohydrates are valuable tools for enzymological studies due to their increased metabolic stability compared to their non-fluorinated analogues. Replacing different hydroxyl groups within the same monosaccharide by fluorine allows to influence a wide range of sugar–receptor interactions and enzymatic transformations. In the past, this principle was frequently used to study the metabolism of highly abundant carbohydrates, while the metabolic fate of rare sugars is still poorly studied. Rare sugars, however, are key intermediates of many metabolic routes, such as the pentose phosphate pathway (PPP). Here we present the design and purely chemical synthesis of a set of three deoxyfluorinated analogues of the rare sugars d -xylulose and d -ribulose: 1-deoxy-1-fluoro-d -ribulose ( 1DFRu ), 3-deoxy-3-fluoro-d -ribulose ( 3DFRu ) and 3-deoxy-3-fluoro-d -xylulose ( 3DFXu ). Together with a designed set of potential late-stage radio-fluorination precursors, they have the potential to become useful tools for studies on the complex equilibria of the non-oxidative PPP.  相似文献   

14.
A carbohydrate–anion recognition system in nonpolar solvents is reported, in which complexes form at the B‐faces of β‐D ‐pyranosides with H1‐, H3‐, and H5‐cis patterns similar to carbohydrate–π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate–anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH ??? A? hydrogen bonds between the binding partners and is related to electron‐withdrawing groups of the carbohydrates as well as increased hydrogen‐bond‐accepting capability of the anions.  相似文献   

15.
The recent utilisation of the glucopyranose ring as scaffold for the synthesis of a potent somatostatin agonist demonstrated the use of monosaccharides as viable templates in drug design.2,3 Monosaccharide-based mimics provide enantiomerically pure, rigid moieties (able to give precise orientation of functional groups), with a high degree of oxygenation to assure water solubility.4 Moreover, carbohydrates exhibit a high combinatorial density. These advantages prompted us to synthesise new monosaccharide derivatives as carbohydrate scaffolds for potential drug design.  相似文献   

16.
New insight into the importance of carbohydrates in biological systems underscores the need for rapid synthetic and screening procedures for them. Development of an organic synthesis-compatible linker that would attach saccharides to microtiter plates was therefore undertaken to facilitate research in glycobiology. Galactosyllipids containing small, hydrophobic groups at the anomeric position were screened for noncovalent binding to microtiter plates. When the lipid component was a saturated hydrocarbon between 13 and 15 carbons in length, the monosaccharide showed complete retention after aqueous washing and could be utilized in biological assays. This alkyl chain was also successfully employed with more complex oligosaccharides in biological assays. In light of these findings, this method of attachment of oligosaccharides to microtiter plates should be highly efficacious to high-throughput synthesis and analyses of carbohydrates in biological assays.  相似文献   

17.
CH-Pi stacking interactions between carbohydrates and aromatic compounds play a central role in biomolecular recognition, especially in lectin-sugar and protein-glycolipid systems. In the present study, we have measured the solubility of the sparingly soluble aromatic base adenine in presence of various saccharides as an approach to investigate the interaction between adenine and sugars. Above 82.5 mM, adenine solutions gradually formed a crystalline precipitate which could be quantified by spectrophotometric turbidity measurements. Precipitation of adenine was increased by salts (NaCl and NaF) whereas it was prevented by DMSO, in agreement with the involvement of hydrophobic interactions (pi-pi stacking) in the vertical stacking of adenine molecules. Several monosaccharides and disaccharides were found to increase adenine solubility, with the following order: D-galactose = D-lactose > D-sucrose > D-glucose = D-maltose > D-ribose > D-fructose. Molecular mechanics simulations indicated that the potent cosolvent effect of beta-D-galactopyranose was probably mediated by CH-pi stacking interactions between its apolar surface and the aromatic structure of adenine. The polar OH groups of the sugars interacted with surrounding water molecules, ensuring the solubility of sugar-adenine complexes. In contrast, beta-D-fructofuranose, which has two polar faces, did not stack onto adenine and had a weak cosolvent effect. CH-pi stacking interactions were also demonstrated between 6-methylpurine and the sugar head group of glycolipids (glucosyl-, galactosyl- and lactosylceramide) but not with the charged head group of phosphatidylinositol-4,5-diphosphate. These data indicate that galactose-containing molecules have a high stacking propensity for aromatic compounds such as adenine, due to the specific structure of the galactose cycle.  相似文献   

18.
《化学:亚洲杂志》2017,12(10):1027-1042
The importance of carbohydrates is evident by their essential role in all living systems. Their syntheses have attracted attention from chemists for over a century. Most chemical syntheses in this area focus on the preparation of carbohydrates from naturally occurring monosaccharides. De novo chemical synthesis of carbohydrates from feedstock starting materials has emerged as a complementary method for the preparation of diverse mono‐ and oligosaccharides. In this review, the history of de novo carbohydrate synthesis is briefly discussed and particular attention is given to methods that address the formation of glycosidic bonds for potential de novo synthesis of oligosaccharides. Almost all methods of this kind involve the formation of dihydropyran intermediates. Recent progress in forming dihydropyrans by Achmatowicz rearrangement, hetero‐Diels–Alder cycloaddition, ring‐closing metathesis, and other methods is also elaborated.  相似文献   

19.
A practical two-step synthetic process for 1-deoxy sugars has been established. The process consists of the direct introduction of a dimethyldithiocarbamate group into the anomeric center of unprotected sugars and subsequent hydrogenation in the AIBN-H3PO2-NaHCO3 system. No protecting groups are needed to synthesize 1-deoxy monosaccharides and 1-deoxy disaccharides.  相似文献   

20.
Carbohydrate-protein interactions play important biological roles in living organisms. For the most part, biophysical and biochemical methods have been used for studying these biomolecular interactions. Less attention has been given to the development of high-throughput methods to elucidate recognition events between carbohydrates and proteins. In the current effort to develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, we prepared carbohydrate microarrays by immobilizing maleimide-linked carbohydrates on thiol-derivatized glass slides and carried out lectin binding experiments by using these microarrays. The results showed that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. In addition, binding affinities of lectins to carbohydrates were also quantitatively analyzed by determining IC(50) values of soluble carbohydrates with the carbohydrate microarrays. To fabricate carbohydrate chips that contained more diverse carbohydrate probes, solution-phase parallel and enzymatic glycosylations were performed. Three model disaccharides were in parallel synthesized in solution-phase and used as carbohydrate probes for the fabrication of carbohydrate chips. Three enzymatic glycosylations on glass slides were consecutively performed to generate carbohydrate microarrays that contained the complex oligosaccharide, sialyl Le(x). Overall, these works demonstrated that carbohydrate chips could be efficiently prepared by covalent immobilization of maleimide-linked carbohydrates on the thiol-coated glass slides and applied for the high-throughput analyses of carbohydrate-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号