首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Cubic Phases Na16(ARb6)Sb7, Compounds with the Anions A = Rb?, Na?, Au?, I? The novel compounds Na16(ARb6)Sb7 have been synthesized from the elements in sealed Nb ampoules at 873 K (A = Rb) and 823 K (A = I, Na, Au). They form brittle cuboctahedra (silver metallic; A = Rb) and irregular polyhedra (silver metallic lustre; A = Na, I; golden metallic lustre; A = Au). They rapidly decompose in moist air to gray products. Their crystal structures have been determined by single crystal X-ray crystallography (A = Rb: a = 1565.8(2) pm; A = I: a = 1563.3(2) pm; A = Na: a = 1562.6(2) pm; A = Au: a = 1560.7(2) pm). They crystallize cubically in the space group Fm3 m (no. 225) with Z = 4 formula units and are isotypic with Sc11Ir4. The compounds are ZINTL phases and their structures can be described as an eightfold defect variant of the Li3Bi type of structure (cF128-8; a = 2a′(Li3Bi)). The Sb atoms form a network of cuboctahedra, centered alternatingly by a SbNa8 cube or a ARb6 octahedron. Main structural features are the anions A? within the Rb6 octahedron. Supporting the existence of A? are the isotypical compounds with the more common anion forming elements (A = Au, I), as well as electrostatic potential considerations together with calculations of the volume increments. The semiconducting properties (Eg = 0.33 eV) of Na16(RbRb6)Sb7, as well as the diamagnetism χmol = ?508 × 10?6 cm3 mol?1, are in accordance with those to be expected from the Zintl concept.  相似文献   

3.
Carbonate Isostructural Anions [SnX3]5? in the Compounds Rb6[SnX3]O0.5 and Cs6[SnX3]O0.5 with X = As, Sb, and Bi The metallic shining compounds Rb6[SnX3]O0.5 and Cs6[SnX3]O0.5 with X = As, Sb, and Bi were prepared from the melt starting from adequate mixtures of the elements and SnO2. They crystallize in the hexagonal system (space group P63/mmc, No. 194, Z = 2) with the lattice constants mentioned in ?Inhaltsübersicht”?. In the structures of the isotypic compounds tin and the main group(V) elements build up trigonal planar anions [SnX3]5? with X = As, Sb, and Bi isostructural to the carbonate anion, oxygen forms isolated O2? ions. The bond lengths Sn? X are significantly shortened with respect to the sums of Pauling covalent radii. The atoms of the units [SnX3]5? are coordinated by alkali metal cations forming trigonal prisms and the O2? anions occupy octahedral holes.  相似文献   

4.
The interaction of RT3 (R=Ce, Y; T=Ni, Co) intermetallic compounds (IMC)with alkaline solutions of MBH4 (M=Na, K, Rb, and Cs) was studied in the temperature range of 298–318 K. For all intermetallic compounds, the reaction of catalytic hydrolysis of NaBH4 is zero order with respect to MBH4 and first order with respect to RT3. The reaction rate decreases and the activation energy of the catalytic hydrolysis of MBH4 increases in the following order. NaBH4, KBH4, RbBH4, and CsBH4. The hydride phases RT3Hx (x2.3—3.9) were synthesized by the interaction of RT3 IMC with alkaline solutions of MBH4. They are similar in composition to the products formed in the reaction of RT3 with gaseous hydrogen at high pressure. The rate of hydrogenation of RT3 in alkaline solutions of MBH4 decreases on going from sodium to cesium. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 921–923, May, 1997.  相似文献   

5.
The ternary rare‐earth germanium antimonides RE12Ge7?xSb21 (RE=La–Pr; x=0.4–0.5) are synthesized by direct reactions of the elements. Single‐crystal X‐ray diffraction studies indicate that they adopt a new structure type (space group Immm, Z=2, a=4.3165(4)–4.2578(2) Å, b=15.2050(12)–14.9777(7) Å, c=34.443(3)–33.9376(16) Å in the progression from RE=La to Pr), integrating complex features found in RE6Ge5?xSb11+x and RE12Ga4Sb23. A three‐dimensional polyanionic framework, consisting of Ge pairs and Sb ribbons, outlines large channels occupied by columns of face‐sharing RE6 trigonal prisms. These trigonal prisms are centered by additional Ge and Sb atoms to form GeSb3 trigonal‐planar units. A bonding analysis attempted through a Zintl–Klemm approach suggests that full electron transfer from the RE atoms to the anionic substructure cannot be assumed. This is confirmed by band‐structure calculations, which also reveal the importance of Ge? Sb and Sb? Sb bonding. Magnetic measurements on Ce12Ge6.5Sb21 indicate antiferromagnetic coupling but no long‐range ordering down to 2 K.  相似文献   

6.
Inorganic, lead-free metal halides are widely sought after following the rise of the halide perovskites as outstanding optoelectronic materials, due to their enhanced stability and reduced toxicity. Herein, we report on the solvothermal synthesis of Rb7Sb3Br16, which exhibits a 0D structure comprised of [SbBr6]3− octahedra and edge-sharing bioctahedra [Sb2Br10]4− dimers that order into layers along the c-axis. This all-inorganic material is air-stable and exhibits weak orange photoluminescence (PL) at room temperature. Low-temperature PL and PL excitation (PLE) measurements reveal the presence of two distinct emission bands that originate from these structural units, with the high-energy emission quenching as temperature rises beyond 150 K. We are also able to obtain Rb7Bi3Br16 and Rb7Bi3I16 which both crystallize in orthorhombic symmetry, with Rb7Bi3Br16 presenting weak low-temperature luminescence while Rb7Bi3I16 is non-luminescent. This work expands the library of emissive inorganic metal halides and provides further evidence for the efficacy of low-dimensional Sb−X luminescent centers based on octahedral and edge-sharing [Sb2X10]4− dimers.  相似文献   

7.
8.
Alkali Metal Bismuthides ABi and ABi2 — Synthesis, Crystal Structure, Properties The Zintl phases ABi (A = K/Rb/Cs; monoclinic, space group, P21/c, a = 1422.3(2)/1474.2(2)/1523.7(3), b = 724.8(1)/750.2(1)/773.7(1), c = 1342.0(2)/1392.1(2)/1439.9(2) pm and β = 113.030(3)/113.033(2)/112.722(3)°, Z = 16) crystallize with the β‐CsSb structure type containing chains of two‐connected Bi atoms. Hence, and according to calculated electronic structures, they are semiconductors with small band gaps of approx. 0.5 eV. In contrast, the compounds ABi2 (A = K/Rb/Cs; cubic, space group Fd3¯m, a = 952.1(2)/962.4(8)/972.0(3) pm, Z = 8) belong to the Laves phases, showing a typical metallic electrical conductivity and no band gaps.  相似文献   

9.
10.
Octahedral clusters from p-block elements are rare ; however, the only known molecular aggregate of this kind, [{(CO)5Cr}6Sn6]2−, has now been supplemented by the isoelectronic cluster [{(CO)5Cr}6Ge6]2− ( 1 ).  相似文献   

11.
The crystalline isotypic solvates Rb4Sn4·2NH3, Cs4Sn4·2NH3, and Rb4Pb4·2NH3 have been synthesized using the direct reduction of elemental tin or tetraphenyltin, respectively, with heavier alkali metals or the dissolution of the binary phase RbPb in liquid ammonia. These compounds contain the cluster ions [Sn4]4– or [Pb4]4– respectively. This is the first time that[Tt4]4– ions (Tt = tetrels) are detected as result of a solution reaction. The accommodation of the ammonia molecules, which build up ion‐dipole interactions to alkali metal cations, requires some modifications of the crystal structures compared to the binary phases RbSn, CsSn, and RbPb. The tetrahedral [Tt4]4– anions have a slightly lower coordination by Rb+ or Cs+ cations and, furthermore, the intercluster distances show a remarkable increase.  相似文献   

12.
13.
14.
Vibrational spectra of the compounds M4E4 (M = K, Rb, Cs; E = Ge, Sn) and of β‐Na4Sn4 with the cluster anions [E4]4? were analysed based on the point group of isolated tetrahedranide units. The lower individual symmetry of the anions in the real structure being more patterned and complex primarily affects the spectra of the tetrahedro‐tetragermanides. ν3(F2) clearly splits both in Raman and IR and in the case of K4Sn4 only in IR. Rb4Sn4 and Cs4Sn4 exhibit very simple spectra with three bands in Raman and one band in IR. The breathing mode ν1(A1) for the quasi isolated [E4]4? cluster appears only in the Raman spectrum and is hardly influenced by the structural environment and by the nature of the alkali metal cations: ν1(A1) = 274 cm?1 ([Ge4]4?) and 183‐187 cm?1 ([Sn4]4?), respectively. The calculated valence force constants fd(E–E) are: [Ge4]4? : fd = 0.89 Ncm?1 ( K ), 0.87 Ncm?1 ( Rb ), 0.86 Ncm?1 ( Cs ) and [Sn4]4? : 0.67 Ncm?1 ( Na ), 0.66 Ncm?1 ( K ), 0.67 Ncm?1 ( Rb ), 0.68 Ncm?1 ( Cs ). Both, the frequencies and the force constants fit well into the range previously reported.  相似文献   

15.
The possibility to synthesize and isolate different types of bismuth polyanions by dissolving various intermetallic precursors (binary samples from A‐Bi or ternary samples from A‐A'‐Bi systems, A and A' = K, Rb, Cs) in ethylenediamine or dimethylform amide in the presence of sequestering agents (2, 2, 2‐crypt or 18‐crown‐6) was investigated. The crystals of (2, 2, 2‐crypt‐K)2Bi4 ( 1 ) and (2, 2, 2‐crypt‐Rb)2Bi4 ( 2 ) compound were obtained from such solutions, the latter for the first time, and their structures were determined. The two compounds are isostructural (P1, Z=1, a = 11.052(2) Å, b = 11.370(2) Å, c = 11.698(2) Å, α = 61.85(3) °, β = 82.58(3) °, γ = 81.87(3) °, R1 = 0.058, wR2 = 0.149 for 1 and a = 11.181(2) Å, b = 11.603(2) Å, c = 11.740(2) Å, α = 61.96(3) °, β = 81.45(3) °, γ = 82.26(3) °, R1 = 0.041, wR2 = 0.109) and contain Bi42— square planar cluster anions and cryptated alkali metal cations. In the case of the presence of 18‐crown‐6 the Laves phases ABi2 (A = K, Rb, Cs) could be isolated from the solutions. A mechanism for the formation of ABi2 is proposed.  相似文献   

16.
The compound [Rb(18‐crown‐6)]2Rb2[Sn9](en)1.5 ( 1 ) was synthesized from an alloy of formal composition K2Rb2Sn9 by dissolving in ethylenediamine (en) followed by the addition of 18‐crown‐6 and toluene. 1 crystallizes in the monoclinic space group P21/n with a = 10.557(2), b = 25.837(5), c = 20.855(4)Å, β = 102.39°, and Z = 4. The structure consists of [Sn9]4— cluster anions, which are connected via Rb atoms to infinite [Rb4Sn9] layers. The layers of binary composition are separated by the crown ether molecules. The crown ether molecules are bound by one side via the Rb atoms to the [Sn9]4— anions. The other side, which is turned away from the Rb atoms, shows only weak van der Waals interactions to the crown ether molecules of the next layer. Comparison with other compounds of similar composition shows, that the variation of the alkali metals and the complexing organic molecules leads to the low dimensional arrangement of the clusters.  相似文献   

17.
18.
Gas‐phase clusters are deemed to be σ‐aromatic when they satisfy the 4n+2 rule of aromaticity for delocalized σ electrons and fulfill other requirements known for aromatic systems. While the range of n values was shown to be quite broad when applied to short‐lived clusters found in molecular‐beam experiments, stability of all‐metal cluster‐like fragments isolated in condensed phase was previously shown to be mainly ascribed to two electrons (n=0). In this work, the applicability of this concept is extended towards solid‐state compounds by demonstrating a unique example of a storable compound, which was isolated as a stable [K([2.2.2]crypt)]+ salt, featuring a [Au2Sb16]4? cluster core possessing two all‐metal aromatic AuSb4 fragments with six delocalized σ electrons each (n=1). This discovery pushes the boundaries of the original idea of Kekulé and firmly establishes the usefulness of the σ‐aromaticity concept as a general idea for both small clusters and solid‐state compounds.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号