首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one-pot, three-component, and atom economic synthesis of biologically and pharmaceutically important fully substituted and functionalized pyrazole derivatives has been accomplished under metal-catalyst-free benign conditions. The strategy involves early condensation of readily available cyclic β-diketones (dimidone, 4-hydroxycoumarin and 2-hydroxy-1,4-naphthoquinone) and arylglyoxals to generate a chalcone type intermediate which upon acid catalyzed condensation with ambident nucleophile arylhydrazones produces various aryl and cyclic β-diketone substituted pyrazole derivatives. The synthesis embraces high functional group tolerance, broad substrate scope, excellent yield of the products, short reaction time and operationally simple and mild reaction conditions. The synthesis provides an easy opportunity of incorporating biologically important N-diarylsulfide/selenide functionality, various enolisable cyclic β-diketones and other bioactive heterocycles concurrently to pyrazole, which may help in designing and development of pyrazole derivatives of pharmacological significance.  相似文献   

2.
Kinetically controlled ring‐expansion polymerizations (REPs) are defined syntheses generating cyclic oligomers and polymers without linear intermediates and without equilibration reactions. This review reports syntheses of cyclic metal alkoxides and their use as initiators for REPs of lactones, cyclic diesters, and cyclocarbonates. In addition to homopolyesters, telechelic oligoesters or polyesters, random copolyesters, and A–B–A triblock copolymers can be prepared by these REPs. The in situ combination of REPs with condensation (mostly acylation) reactions allows a broad variation of end groups. The in situ combination of REPs with polycondensation enables various chain‐extension reactions, including the syntheses of multiblock copolymers. With spirocyclic initiators, four‐armed stars with functional end groups may be prepared. The in situ combination of REPs with condensation reactions of trifunctional or multifunctional reagents makes a broad variety of networks accessible. The average segment lengths may be controlled via the monomer/initiator ratios of the REP. All materials produced via the aforementioned REP processes are biodegradable and nontoxic, and this allows for biomedical and pharmaceutical applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4723–4742, 2004  相似文献   

3.
A simple, clean, and efficient method for the synthesis of spirooxindole derivatives via condensation of isatin with enolizable cyclic β‐diketones has been developed. The use of water as a solvent allows avoiding the use of toxic organic solvents, which makes this reaction safe and environmentally friendly. The mechanism of the condensation reaction has been investigated using first‐principles‐based density functional theory calculations.  相似文献   

4.
An efficient synthesis of cyclic IDP-carbocyclic-ribose (3) and its 8-bromo derivative 6, as stable mimics of cyclic ADP-ribose, was achieved, and a condensation reaction with phenylthiophosphate-type substrate 15 or 16 to form an intramolecular pyrophosphate linkage was a key step. N-1-Carbocyclic-ribosylinosine derivative 28 and the corresponding 8-bromo congener 24 were prepared via condensation between N-1-(2,4-dinitrophenyl)inosine derivative 17 and a known optically active carbocyclic amine 18. Compounds 24 and 28 were then converted to the corresponding 5"-phosphoryl-5'-phenylthiophosphate derivatives 15 and 16, respectively, which were substrates for the condensation reaction to form an intramolecular pyrophosphate linkage. Treatment of 8-bromo substrate 15 with I2 or AgNO3 in the presence of molecular sieves 3A (MS 3A) in pyridine at room temperature gave the desired cyclic product 12 quantitatively, while the yield was quite low without MS. The similar reaction of 8-unsubstituted substrate 16 gave the corresponding cyclized product 32 in 81% yield. Acidic treatment of these cyclic pyrophosphates 12 and 32 readily gave the targets 6 and 3, respectively. This result suggests that the construction of N-1-substituted hypoxanthine nucleoside structures from N-1-(2,4-dinitrophenyl)inosine derivatives and the intramolecular condensation by activation of the phenylthiophosphate group with I2 or AgNO3/MS 3A combine to provide a very efficient route for the synthesis of analogues of cyclic ADP-ribose such as 3 and 6. Thus, this may be an entry to a general method for synthesizing biologically important cyclic nucleotides of this type.  相似文献   

5.
An efficient and green approach is reported for the rapid synthesis of spirocyclic 2‐oxindole using triethylenediamine or imidazole Brønsted acidic ionic liquids supported in Zr metal–organic framework (TEDA/IMIZ‐BAIL@UiO‐66) as a novel, superior and retrievable heterogeneous catalyst under ultrasonic irradiation. Heterocyclic compounds including pyrido[2,3‐d:6,5‐d′]dipyrimidines and indeno[2′,1′:5,6]pyrido[2,3‐d]pyrimidines were obtained by the one‐pot condensation reaction of 6‐amino‐1,3‐dimethyluracil, isatins and cyclic 1,3‐diketone (barbituric acid or 1,3‐indanedione). The reusability of the catalyst, low catalyst loading, short reaction times, excellent yields, simple work‐up, and use of sonochemical procedure as a mild process and an alternative energy source are some of the advantages of this method. Furthermore, the novel heterogeneous nanocomposite was fully characterized using various techniques.  相似文献   

6.
An efficient and green method for the synthesis of phthalide [isobenzofuran-1(3H)-one] fused pyrazoles via the catalyst-free condensation reaction of 2-formylbenzoic acid, hydrazine hydrate, and acetylenic esters in water is reported. Reaction of 2-formylbenzoic acid with 6-amino-uracils or cyclic 1,3-diketones resulted in the formation of phthalide-fused pyrimidine or cyclic 1,3-diketone derivatives.  相似文献   

7.
The significant advancements in asymmetric organocascade reactions have been accomplished during the past decades, paving the way to the efficient and stereoselective construction of structurally complex scaffolds from simple and readily available starting materials. Nitro‐containing cyclic compounds have become a privileged molecular library given their broad and promising activities in various therapeutic areas. In various approaches to build these valuable scaffolds, the utility of γ‐nitrocarbonyl intermediates is one of the most efficient approaches due to its high efficiency, reliability and versatility. The strategies and catalyst systems described here highlight recent advances in the enantioselective synthesis of nitro‐containing cyclic molecules via organocascade strategies based on γ‐nitrocarbonyl intermediates. Various organocatalysts with distinct activation modes have found application in providing these sophisticated compounds. This review is organized according to the types of organocatalyst. These methods are of importance for the construction of complex chiral cyclic frameworks and the design of new pharmaceutical compounds. We believe that compounds based on nitro‐containing cyclic skeletons have the potential to provide novel therapeutic agents and useful biological tools.  相似文献   

8.
Four N-doped graphene materials with a nitrogen content ranging from 8.34 to 13.1 wt.% are prepared by the ball milling method. This method represents an eco-friendly mechanochemical process that can be easily adapted for industrial-scale productivity and allows both the exfoliation of graphite and the synthesis of large quantities of functionalized graphene. These materials are characterized by transmission and scanning electron microscopy, thermogravimetry measurements, X-ray powder diffraction, X-ray photoelectron and Raman spectroscopy, and then, are tested towards the oxygen reduction reaction by cyclic voltammetry and rotating disk electrode methods. Their responses towards ORR are analysed in correlation with their properties and use for the best ORR catalyst identification. However, even though the mechanochemical procedure and the characterization techniques are clean and green methods (i.e., water is the only solvent used for these syntheses and investigations), they are time consuming and, generally, a low number of materials can be prepared, characterized and tested. In order to eliminate some of these limitations, the use of regression learner and reverse engineering methods are proposed for facilitating the optimization of the synthesis conditions and the materials’ design. Thus, the machine learning algorithms are applied to data containing the synthesis parameters, the results obtained from different characterization techniques and the materials response towards ORR to quickly provide predictions that allow the best synthesis conditions or the best electrocatalysts’ identification.  相似文献   

9.
Simple reactions of the most used functional groups allowing two molecular fragments to link under mild, sustainable conditions are among the crucial tools of molecular chemistry with multiple applications in materials science, nanomedicine, and organic synthesis as already exemplified by peptide synthesis and “click” chemistry. We are concerned with redox organometallic compounds that can potentially be used as biosensors and redox catalysts and report an uncatalyzed reaction between primary and secondary amines with organometallic electrophilic alkynes that is free of side products and fully “green”. A strategy is first proposed to synthesize alkynyl organometallic precursors upon addition of electrophilic aromatic ligands of cationic complexes followed by endo hydride abstraction. Electrophilic alkynylated cyclopentadienyl or arene ligands of Fe, Ru, and Co complexes subsequently react with amines to yield trans‐enamines that are conjugated with the organometallic group. The difference in reactivities of the various complexes is rationalized from the two‐step reaction mechanism that was elucidated through DFT calculations. Applications are illustrated by the facile reaction of ethynylcobalticenium hexafluorophosphate with aminated silica nanoparticles. Spectroscopic, nonlinear‐optical and electrochemical data, as well as DFT and TDDFT calculations, indicate a strong push–pull conjugation in these cobalticenium– and Fe– and Ru–arene–enamine complexes due to planarity or near‐planarity between the organometallic and trans‐enamine groups involving fulvalene iminium and cyclohexadienylidene iminium mesomeric forms.  相似文献   

10.
Green synthetic protocol refers to the development of processes for the sustainable production of chemicals and materials. For the synthesis of various biologically active compounds, energy-efficient and environmentally benign processes are applied, such as microwave irradiation technology, ultrasound-mediated synthesis, photo-catalysis (ultraviolet, visible and infrared irradiation), molecular sieving, grinding and milling techniques, etc. Thesemethods are considered sustainable technology and become valuable green protocol to synthesize new drug molecules as theyprovidenumerous benefits over conventional synthetic methods.Based on this concept, oxadiazole derivatives are synthesized under microwave irradiation technique to reduce the formation of byproduct so that the product yield can be increased quantitatively in less reaction time. Hence, the synthesis of drug molecules under microwave irradiation follows a green chemistry approach that employs a set of principles to minimize or remove the utilization and production of hazardous toxic materials during the design, manufacture and application of chemical substances.This approach plays a major role in controlling environmental pollution by utilizing safer solvents, catalysts, suitable reaction conditions and thereby increases the atom economy and energy efficiency. Oxadiazole is a five-membered heterocyclic compound that possesses one oxygen and two nitrogen atoms in the ring system.Oxadiazole moiety is drawing considerable interest for the development of new drug candidates with potential therapeutic activities including antibacterial, antifungal, antiviral, anticonvulsant, anticancer, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and antiinflammatory, etc. This review focuses on different synthetic approaches of oxadiazole derivatives under microwave heating method and study of their various biological activities.  相似文献   

11.
Supramolecular complexes consisting of cyclic molecules, such as cyclodextrins (CD), and polymeric chains have attracted considerable attention, being addressed in literature as novel molecular assembly. The so-called molecular tube (MT), synthesized by cross-linking adjacent α-CD in a polyrotaxane, is expected to act as host for large molecules in inclusion processes. In addition, these tubes can also be used as building-blocks in the formulation of novel materials. Molecular tubes constructed with α-cyclodextrin are obtained as a mixture containing entities with various molecular weights, and the molecular features determining the tube size distribution are not completely understood. In this paper, we propose the use of a statistical procedure based on binary numbers to examine the MT formation process. A complete analysis of the distinct orientations between cyclodextrin’s units was made and, in the light of the approximations of our model, we pointed out, on quantitative basis, that the molecular weight distribution of α-cyclodextrin MTs can be explained assuming imperfections in the cross-linking process due to the existence of head-to-tail (HT) arrangements in the polyrotaxanes employed in synthesis.  相似文献   

12.
An efficient and modest protocol has been utilized for the synthesis of bicyclic dilactam derivatives through one-pot multicomponent domino reaction starting from various cyclic ketones under mild condition. The synthesized motif shows four stereogenic centers with two quaternary amine functionalities and such molecular arrangements are very fascinating and rare to obtain. We propose a mechanism for the formation of bicyclic dilactams through aldol condensation/condensation of cyanoacetamides/cyclization of condensed intermediate.  相似文献   

13.
The efficient synthesis of a novel cyclic carbazole tetramer and carbazole main-chain polymer via the Knoevenagel condensation has been developed. The carbazole cyclic tetramer could be obtained in a high yield by a one-stage Knoevenagel condensation of 3,6-diformyl-9-heptylcarbazole and 3,6-bis(cyanoacetoxymethyl)-9-heptylcarbazole in tetrahydrofuran (THF) without the use of the high-dilution principle. The corresponding carbazole main-chain polymer could also be obtained as a main product by a two-stage Knoevenagel polycondensation. Detailed structural characterization of this novel oligomer by spectroscopy and elemental analysis confirmed the cyclic structure. The corresponding main-chain polymer with large molecular weight was found to be amorphous by differential scanning calorimetry. Studies on the nonlinear optical and photorefractive properties of these materials are in progress. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2041–2047, 1997  相似文献   

14.
Aurones are an interesting, but little studied member of the flavanoid family of natural products. Of the various methods available for their synthesis, the simplest involves the condensation of a coumaranone with an aldehyde. This reaction can be performed under acidic or basic conditions. We have recently discovered an effectively neutral set of conditions that employ the deep eutectic solvent comprised of choline chloride and urea as both solvent and catalyst. Modest to good yields can be achieved for a range of aldehydes, thereby facilitating further study of aurones from both a biological as well as a spectroscopic perspective.  相似文献   

15.
Abstract

The synthesis of the title compounds has been carried out by condensation via a Wittig-type reaction of a pyridinium hexafluorophosphate with a phosphonate ester to give the desired (4-nitrophenyl)tetrathiafulvalene the nitro group of which was reduced to an amino group. Reaction of the amine with chlorosulfonyl isocyanate and subsequently with tert-butyl alcohol gave the corresponding open-chain sulfamide. Cyclization under basic conditions and de-protection led to 2-[4-(4′,5′-dipropyltetrathiafulvalen-4-yl)]phenyl-1,2,6-thiadiazinane 1,1-dioxide. Finally, N-alkylated and N-acylated cyclic sulfamides linked to tetrathiafulvalene were obtained. Their electron donor ability was measured by cyclic voltammetry. A detailed DFT study based on B3LYP/6–31G (d,p) of electronic properties is also presented. The calculated molecular electrostatic potential shows that, the negative charge covers the nitro and sulfamide function, while positive charge is located at the hydrogen atoms of the amine and sulfamide rings. The calculated HOMO and LUMO energy reveals that charge transfer occurs within the molecule. The chemical reactivity parameters reveal that tetrathiafulvalene 1 is highly reactive, which facilitates the desired formation of the cyclic sulfamide. The first hyperpolarizability βtot shows that compounds 1 and 5 are good candidates as a NLO material.  相似文献   

16.
This review presents an updated and alternative perspective on enzymatic synthesis to obtain polyesters, with a focus on the precursor materials for absorbable sutures: poly-lactic, poly-glycolic, and poly-lactic-co-glycolic acids. Currently, the profitable path towards the industrial synthesis of polyesters is ring-opening polymerization (ROP) of lactones, which is an experimentally complex process and implies a hazardous environmental impact due to the need for energy consumption, use of large volumes of toxic organic solvents and of non-biocompatible metal-based catalysts. On the contrary, enzymatically driven reactions may be performed under mild conditions in simple reactors. Mechanistic and experimental issues of the two major biocatalyzed strategies -direct condensation and ROP- were analyzed from a green chemistry perspective. These enzyme-catalyzed poly-esterifications often return low yield and/or low final molecular weight (Mw). Considering all the analyzed published data available, possible strategies to overcome these limitations were postulated: implementation of aqueous biphasic reaction systems, use of ultrasound agitation and sequential addition of reactants or co-solvents. To promote Mw increment, post-reaction treatments can be carried out such as thermally induced short-chain polymerization under vacuum and incorporation of glycols as chain extenders.  相似文献   

17.
Mechanochemical methods of neat grinding and liquid‐assisted grinding have been applied to the synthesis of mono‐ and bis(thiourea)s by using the click coupling of aromatic and aliphatic diamines with aromatic isothiocyanates. The ability to modify the reaction conditions allowed the optimization of each reaction, leading to the quantitative formation of chiral bis(thiourea)s with known uses as organocatalysts or anion sensors. Quantitative reaction yields, combined with the fact that mechanochemical reaction conditions avoid the use of bulk solvents, enabled solution‐based purification methods (such as chromatography or recrystallization) to be completely avoided. Importantly, by using selected model reactions, we also show that the described mechanochemical reaction procedures can be readily scaled up to at least the one‐gram scale. In that way, mechanochemical synthesis provides a facile method to fully transform valuable enantiomerically pure reagents into useful products that can immediately be applied in their designed purpose. This was demonstrated by using some of the mechanochemically prepared reagents as organocatalysts in a model Morita–Baylis–Hillman reaction and as cyanide ion sensors in organic solvents. The use of electronically and sterically hindered ortho‐phenylenediamine revealed that mechanochemical reaction conditions can be readily optimized to form either the 1:1 or the 1:2 click‐coupling product, demonstrating that reaction stoichiometry can be more efficiently controlled under these conditions than in solution‐based syntheses. In this way, it was shown that excellent stoichiometric control by mechanochemistry, previously established for mechanochemical syntheses of cocrystals and coordination polymers, can also be achieved in the context of covalent‐bond formation.  相似文献   

18.
The preparation of nanostructured organic-inorganic materials by assembling of nanobuilding blocks allows controlling the extent of phase interaction, which in its turn governs structure-properties relationships. We present here the synthesis of siloxane-based nanobuilding blocks prepared by reacting diphenylsilanediol with vinyltriethoxysilane and triethoxysilane. The reaction products were obtained by non-hydrolytic condensation between silanediol and ethoxide groups in inert atmosphere, in the presence of pyridine, triethylamine or butyl lithium. Different synthetic conditions were examined by means of ATR-FTIR and NMR spectroscopies, showing the formation of siloxane bonds. In the case of triethoxysilane the reaction carried out in the presence of pyridine leads to Si–H bond preservation in the final product. Air stable products with improved Si–O–Si hydrolytic stability can be obtained by removal of the base after the reaction completion. The condensation products can be described as a mixture of siloxane rings involving difunctional and trifunctional silicon units.  相似文献   

19.
Abstract

2-Azetidinones possess broad and potent activity due to presence of β-lactam ring and has been established as one of the biologically important scaffolds. The synthesis of N-(4-aryl-2-oxoazetidinone)-isonicotinamide by novel methods of stirring and sonication are described. The conventional method for synthesis of 2-azetidinones involves use of Dean–Stark water separator for the removal of water from the reaction with long reaction time (12–16 h reflux) at a very low temperature (?70 to ?90°C). The microwave method reported requires inert atmosphere of nitrogen gas for the synthesis of 2-azetidinones. We report herein the synthesis of 2-azetidinone analogs of isonicotinic acid hydrazide by novel green route methods of sonication and stirring using molecular sieves. Results indicate that higher yields and shorter reaction times can be achieved by employing novel green route methods of synthesis.  相似文献   

20.
Combinatorial synthesis has developed within a few years from a laboratory curiosity to a method that is taken seriously in drug research. Rapid progress in molecular biology and the resulting ability to determine the activity of new substances extremely efficiently have led to a change in paradigm for the synthesis of test compounds: in addition to the conventional procedure of synthesizing one substance after another, new methods allowing simultaneous creation of many structurally defined substances are becoming increasingly important. A characteristic of combinatorial synthesis is that a reaction is performed with many synthetic building blocks at once—in parallel or in a mixture— rather than with just one building block. All possible combinations are formed in each step, so that a large number of products, a so-called library, is obtained from only a few reactants. Several methods have been developed for combinatorial synthesis of small organic molecules, based on research into peptide library synthesis: single substances are produced by highly automated parallel syntheses, and special techniques enable targeted synthesis of mixtures with defined components. Many structures can be obtained by combinatorial synthesis, and the size of the libraries created ranges from a few individual compounds to many thousand substances in mixtures. This article gives an overview of the combinatorial syntheses of small organic molecules reported to date, performed both in solution and on a solid support. In addition, different techniques for identification of active compounds in mixtures are presented, together with ways to automate syntheses and process the large amounts of data produced. An overview of pionering companies active in this area is also given. The final outlook attempts to predict the future development of this exponentially growing area and the influence of this new thinking in other areas of chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号