首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
研究了平均场倒向随重机微分方程,得到了平均场倒向重随机微分方程解的存在唯一性.基于平均场倒向重随机微分方程的解,给出了一类非局部随机偏微分方程解的概率解释.讨论了平均场倒向重随机系统的最优控制问题,建立了庞特利亚金型的最大值原理.最后讨论了一个平均场倒向重随机线性二次最优控制问题,展示了上述最大值原理的应用.  相似文献   

2.
对随机递归最优控制问题即代价函数由特定倒向随机微分方程解来描述和递归混合最优控制问题即控制者还需 决定最优停止时刻, 得到了最优控制的存在性结果. 在一类等价概率测度集中,还给出了递归最优值函数的最小和最大数学期望.  相似文献   

3.
本文研究了带Poisson 跳跃的正倒向随机延迟系统的递归最优控制问题. 利用经典的针状变分方法、对偶技术和带Poisson 跳跃的超前倒向随机微分方程的相关结果, 证明了最优控制的最大值原理, 包括了最优控制满足的必要条件和充分条件.  相似文献   

4.
文章考虑状态方程关于状态和控制仿射,效用关于状态和控制凸的平均场博弈,允许状态方程的扩散项可退化且依赖状态和分布.由于允许漂移项和扩散项关于分布可以线性增长,因此可以包含线性二次平均场博弈,且允许状态的期望以线性形式出现在状态方程中.作者证明了对应的McKean-Vlasov型正倒向微分方程解的存在性,并获得了对应的解耦函数的正则性.最后作者证明了用平均场博弈的解和解耦函数可以以N-1/d+4的速度逼近多人博弈的Nash均衡.  相似文献   

5.
研究带有时滞和终端状态限制的平均场正倒向随机控制系统的一个最优控制问题.驱动系统的系数依赖于解、解的时滞以及它们的分布.利用Lions导数,终端扰动方法以及Ekeland变分原则,得到了两种随机最大值原理.通过研究一个线性二次问题和一个生产-消费最优选取的平均场对策问题,对这一理论结果进行了阐述说明.  相似文献   

6.
本文研究伊藤-泊松型随机微分方程的线性二次控制问题,利用动态规划方法、伊藤公式等技巧,通过解HJB方程,我们得到了随机Riccati方程及另外两个微分方程,求出控制变量,解决了线性二次最优控制最优问题.  相似文献   

7.
给出一类正倒向随机微分方程解的存在唯一性结果,应用这个结果研究了一类新的推广的随机线性二次最优控制器的设计问题,得到了由正倒向随机微分方程解所表示的唯一最优控制器的显式结构;在推广的Riccati方程系统基础上,得到最优控制器精确的线性反馈形式.最后,给出了随机线性二次最优控制器的设计算法.  相似文献   

8.
本文考虑一类状态受限的随机延迟最优控制问题,其中控制域为凸集且扩散项系数中含有控制变量.控制域可以是无界集合.用最大值原理方法建立了最优控制满足的必要条件.也给出了充分最优性条件,从而有助于找到最优控制.  相似文献   

9.
本文研究了一类一维带平均场的非时齐随机微分方程.在一定条件下,我们证明了方程唯一解的遍历性.进一步地,当平均场强度趋于0时,我们还证明了方程的解和平稳分布分别几乎一致、依Wasserstein距离收敛于相应无平均场方程的解和平稳分布.  相似文献   

10.
本文旨在研究随机系数下随机微分方程的线性二次最优控制问题.本文从闭环最优控制/策略存在的必要性条件的角度开展研究. 若闭环最优控制/策略存在, 得到其显示反馈表示、带伪逆运算的倒向随机Riccati方程的适定性及不同系数间满足的一些本质性条件. 此处结论本质地推广和改进了文[Ait Rami M, Moore J, Zhou X. Indefinite stochastic linear quadratic control and generalized differential Riccati equation [J]. {\it SIAM J Control Optim,} 2001, 40:1296--1311;Sun J, Yong J. Linear quadratic stochastic differential games: open-loop and closed-loop saddle points [J]. {\it SIAM J Control Optim,} 2014, 52:4082--4121;L\"{u} Q, Wang T, Zhang X. Characterization of optimal feedback for stochastic linear quadratic control problems,Probab Uncertain Quant Risk, 2017, 2017, 2:11, DOI 10.1186/s41546-017-0022-7]的相应结论.此外, 本文得到了一个关于倒向随机Riccati方程和二阶伴随方程两类方程适应解之间的微妙关系. 注意到,这一结论在现有文献中首次出现. 最后, 本文讨论了在均值方差对冲问题中的应用.  相似文献   

11.
In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.  相似文献   

12.
We study the Riccati equation arising in a class of quadratic optimal control problems with infinite dimensional stochastic differential state equation and infinite horizon cost functional. We allow the coefficients, both in the state equation and in the cost, to be random. In such a context backward stochastic Riccati equations are backward stochastic differential equations in the whole positive real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove existence of a minimal non-negative solution and, under additional assumptions, its uniqueness. We show that such a solution allows to perform the synthesis of the optimal control and investigate its attractivity properties. Finally the case where the coefficients are stationary is addressed and an example concerning a controlled wave equation in random media is proposed.  相似文献   

13.
Abstract

In this article, we initiate a study on optimal control problem for linear stochastic differential equations with quadratic cost functionals under generalized expectation via backward stochastic differential equations.  相似文献   

14.
In this article, we consider a linear-quadratic optimal control problem (LQ problem) for a controlled linear stochastic differential equation driven by a multidimensional Browinan motion and a Poisson random martingale measure in the general case, where the coefficients are allowed to be predictable processes or random matrices. By the duality technique, the dual characterization of the optimal control is derived by the optimality system (so-called stochastic Hamilton system), which turns out to be a linear fully coupled forward-backward stochastic differential equation with jumps. Using a decoupling technique, the connection between the stochastic Hamilton system and the associated Riccati equation is established. As a result, the state feedback representation is obtained for the optimal control. As the coefficients for the LQ problem are random, here, the associated Riccati equation is a highly nonlinear backward stochastic differential equation (BSDE) with jumps, where the generator depends on the unknown variables K, L, and H in a quadratic way (see (5.9) herein). For the case where the generator is bounded and is linearly dependent on the unknown martingale terms L and H, the existence and uniqueness of the solution for the associated Riccati equation are established by Bellman's principle of quasi-linearization.  相似文献   

15.
In this work,we study the gradient projection method for solving a class of stochastic control problems by using a mesh free approximation ap-proach to implement spatial dimension approximation.Our main contribu-tion is to extend the existing gradient projection method to moderate high-dimensional space.The moving least square method and the general radial basis function interpolation method are introduced as showcase methods to demonstrate our computational framework,and rigorous numerical analysis is provided to prove the convergence of our meshfree approximation approach.We also present several numerical experiments to validate the theoretical re-sults of our approach and demonstrate the performance meshfree approxima-tion in solving stochastic optimal control problems.  相似文献   

16.
Abstract

We consider stochastic optimal control problems in Banach spaces, related to nonlinear controlled equations with dissipative non linearities: on the nonlinear term we do not impose any growth condition. The problems are treated via the backward stochastic differential equations approach, that allows also to solve in mild sense Hamilton Jacobi Bellman equations in Banach spaces. We apply the results to controlled stochastic heat equation, in space dimension 1, with control and noise acting on a subdomain.  相似文献   

17.
在一般情形下,分析了离散时间LQ问题与连续时间情形两者之间的自然联系.首先回顾了连续时间和离散时间随机LQ问题及对应Riccati微分/差分方程的相关结论.接下来在假设Riccati微分方程有解的前提下,证明了离散化步长足够小时,Riccati差分方程有解.然后针对连续和离散时间模型,采用配对问题最优控制的反馈形式,分别构造了一个辅助反馈控制,并证明该控制可驱使对应模型的性能指标逼近于配对问题的值函数,以此得到了关于两个模型之间联系的初步结论.最后藉由前述结论以及控制问题的特性,揭晓了连续时间和离散时间模型之间的自然联系,并给出了Riccati差分方程和微分方程的解之间的误差估计.由此联系,可构造相应离散系统和LQ问题,以适当的阶估计连续时间LQ问题的解,抑或为离散时间模型构造一个近似最优控制.无论哪种思路,都旨在降低直接求解原问题的难度和复杂性.  相似文献   

18.
This paper is mainly concerned with the solutions to both forward and backward mean-field stochastic partial differential equation and the corresponding optimal control problem for mean-field stochastic partial differential equation. The authors first prove the continuous dependence theorems of forward and backward mean-field stochastic partial differential equations and show the existence and uniqueness of solutions to them. Then they establish necessary and sufficient optimality conditions of the control problem in the form of Pontryagin''s maximum principles. To illustrate the theoretical results, the authors apply stochastic maximum principles to study the infinite-dimensional linear-quadratic control problem of mean-field type. Further, an application to a Cauchy problem for a controlled stochastic linear PDE of mean-field type is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号