首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of PdCl2[(?)-DIOP], PtCl2[(?)-DIOP] and of NiCl2-[(?)-DIOP] have been determined by X-ray analysis and refined by least-squares methods [(?)-DIOP=(?)-2,2-dimethyl-4,5-bis(diphenylphosphinomethyl)-1,3-dioxolane]. The coordination around the nickel atom is tetrahedral, the coordination around palladium and platinum is square planar. The unit cell of the palladium complex contains two non-equivalent molecules with different conformations of the seven-membered chelate ring involving the metal and the two phosphorus atoms. PtCl2[(?)-DIOP] is isostructural with the corresponding palladium complex.  相似文献   

2.
《化学:亚洲杂志》2018,13(19):2800-2804
Here we report a partially oxidized palladium nanodot (Pd/PdOx) catalyst with a diameter of around 4.5 nm. In aqueous CO2‐saturated 0.5 m KHCO3, the catalyst displays a Faradaic efficiency (FE) of 90 % at −0.55 V vs. reversible hydrogen electrode (RHE) for carbon monoxide (CO) production, and the activity can be retained for at least 24 h. The improved catalytic activity can be attributed to the strong adsorption of CO2.− intermediate on the Pd/PdOx electrode, wherein the presence of Pd2+ during the electroreduction reaction of CO2 may play an important role in accelerating the carbon dioxide reduction reaction (CO2RR). This study explores the catalytic mechanism of a partially oxidized nanostructured Pd electrocatalyst and provides new opportunities for improving the CO2RR performance of metal systems.  相似文献   

3.
A nonsymmetric phosphorus ylide and its palladium(II) complex have been synthesized as potential catalytically active compounds. The reaction of 1 equiv nonsymmetric phosphorus ylide, Ph2PCH2PPh2C(H)C(O)PhBr with [Pd(dppe)Cl2], followed by treatment with 2 equiv AgOTf led to [(dppe)Pd(Ph2PCH2PPh2C(H)C(O)PhBr)](OSO2CF3)2, which contains a five-membered P,P chelate ring on one side and a five-membered P,C chelate ring on the other side. The palladium complex was synthesized and investigated by fourier transform infrared spectroscopy (FT-IR), UV–visible, multinuclear (1H, 31P and 19F) nuclear magnetic resonance (NMR), and electrospray ionisation-mass spectroscopic techniques. FT-IR and 31P NMR studies revealed that the phosphorus ylide is coordinated to palladium via the terminal phosphorus (Pc) of the ylide and methene group (CH). Suzuki reactions for varying aryl halides using the cyclopalladated complex as an efficient catalyst were performed. Various aryl halides were coupled with arylboronic acids in DMF, under air, in the presence of 0.001?mol% of the homogeneous catalyst to afford the corresponding cross-coupled products in good to excellent yields.  相似文献   

4.
Phase composition and surface layer state of the Pd–P hydrogenation catalyst formed at various P/Pd ratios from Pd(acac)2 and white phosphorus in a hydrogen atmosphere were determined. Palladium on the catalyst surface is mainly in two chemical states: as Pd(0) clusters and as palladium phosphides. As the P/Pd ratio increases, the fraction and size of palladium clusters decrease, and also the phase composition of formed palladium phosphides changes: Pd3P0.8 → Pd5P2 → PdP2. The causes of the modifying action of phosphorus on the properties of palladium catalysts for hydrogenation of unsaturated compounds were considered.  相似文献   

5.
The mechanistic aspects of organic reactions catalyzed with palladium clusters and stoichiometric reactions of carbonyl and carbene clusters are discussed. Palladium carbonyl carboxylates Pd4(CO)4 (OCOR)4(RMe, CMe3, Ph, CF3, CCl3) undergo thermolysis above 110–130°C, giving rise to CO2, CO and diacyls. In solutions of aromatic compounds the insertion of carbon dioxide into the aromatic CH bond or activated CH bond of alkylaromatic compounds was observed in the course of the thermolysis. The decomposition of palladium carbene carboxylate cluster Pd4(Ph2C)4(OAc)4 at 80°C has been found to involve inner sphere carbene oxidation during which an oxygen atom is transferred from the carboxylate group to the carbene ligand. Analogously, the reaction of [Pd(OAc)2PPh3]2 with formic acid, a reaction involving intermediate cluster formation, includes the transfer of an oxygen atom from the formate droup to the P atom of a phosphorus containing ligand, supposedly a diphenylphosphido bridging group. Positional and geometric α-alkene isomerization in aqueous PdCl2−2 solution has been found to be catalyzed by palladium (I) complexes of type Pd2Cl2−4. Colloidal clusters containing more than 500 palladium atoms in the metal core, which are soluble in polar organic solvents, have been found to catalyze the oxidative reactions of alkenes, toluene, alcohols and formic acid. Alcohols bearing at least one hydrogen atom in α-position undergo dehydration under mild conditions in non-acidic solution containing a Pd, Mo octanuclear anionic cluster [Pd4Mo4(CO)12Cp]2−. The reaction of benzyl alcohol gives rise to trans-stilbene. All these catalytic reactions can be rationalized within a scheme including the oxidative addition of the substrates across cluster metal-metal bond as a key step.  相似文献   

6.
The use of formic acid (FA) to produce molecular H2 is a promising means of efficient energy storage in a fuel‐cell‐based hydrogen economy. To date, there has been a lack of heterogeneous catalyst systems that are sufficiently active, selective, and stable for clean H2 production by FA decomposition at room temperature. For the first time, we report that flexible pyridinic‐N‐doped carbon hybrids as support materials can significantly boost the efficiency of palladium nanoparticle for H2 generation; this is due to prominent surface electronic modulation. Under mild conditions, the optimized engineered Pd/CN0.25 catalyst exhibited high performance in both FA dehydrogenation (achieving almost full conversion, and a turnover frequency of 5530 h?1 at 25 °C) and the reversible process of CO2 hydrogenation into FA. This system can lead to a full carbon‐neutral energy cycle.  相似文献   

7.
A synthetic method to prepare tetrahydroquinoline-4-carboxylic acid esters has been developed through the transition-metal-catalyzed intramolecular aromatic C−H functionalization of α-diazoesters. Both [{Pd(IMes)(NQ)}2] (IMes=1,3-dimesitylimidazol-2-ylidene, NQ=1,4-naphthoquinone) and the first-generation Grubbs catalyst proved effective for this purpose. The ruthenium catalyst was found to be the most versatile, although in a few cases the palladium complex afforded better yields or selectivities. According to DFT calculations, Pd0- and RuII-catalyzed sp2-CAr−H functionalization proceeds through different reaction mechanisms. Thus, the Pd0-catalyzed reaction involves a Pd-mediated 1,6-H migration from the sp2-CAr−H bond to the carbene carbon atom, followed by a reductive elimination process. In contrast, electrophilic addition of the ruthenacarbene intermediate to the aromatic ring and subsequent 1,2-proton migration are operative in the Grubbs catalyst promoted reaction.  相似文献   

8.
A novel carbon‐titania composite material, C/TiO2, has been prepared by growing carbon nanofibers (CNFs) on TiO2 surface via methane decomposition using Ni‐Cu as a catalyst. The C/TiO2 was used for preparing supported palladium catalyst, Pd/C/TiO2. The support and Pd/C/TiO2 catalyst were characterized by BET, SEM, XRD and TG‐DTG. Its catalytic performance was evaluated in selective hydrogenation of citral to citronellal, and compared with that of activated carbon supported Pd catalyst. It was found that the Pd/C/TiO2 catalyst contains 97% of mesopores. And it exhibited 88% of selectivity to citronellal at citral conversion of 90% in citral hydrogenation, which was much higher than that of activated carbon supported Pd catalyst. This result may be attributed to elimination of internal diffusion limitations, which were significant in activated carbon supported Pd catalyst, due to its microporous structure.  相似文献   

9.
The formylation of aryl halides with CO2 to generate aryl aldehydes is challenging. Herein, we report a novel synthesis of aryl aldehydes by formylation of aryl bromides with CO2 and a waste silane, poly(methylhydrosiloxane) (PMHS). It has been discovered that a simple combination of 1,3‐bis(diphenyphosphino)propane (DPPP)‐chelated Pd catalyst, Pd(DPPP)Cl2, with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) is able to effectively catalyze the reaction, leading to aryl aldehydes in moderate to excellent yields, and without any by‐products in most cases. Moreover, this route could be extended to the formylation of aryl iodides with high efficiency. This approach is simple, less costly, and environmentally friendly, and also widens the applications of CO2 to form value‐added chemicals by the construction of new C?C bonds.  相似文献   

10.
吕艳卓  徐岩  陆天虹  邢巍  张密林 《化学学报》2007,65(16):1583-1587
直接甲醇燃料电池(DMFC)由于具有较多的优点而受到广泛的关注. 但是碳载Pt (Pt/C)阳极催化剂电催化活性低是限制其应用的一个主要问题. 为了提高Pt/C催化剂对甲醇氧化的电催化性能, 分别用CO2, 空气, H2O2或HNO3对常用作为载体的Vulcan XC-72碳黑进行预处理. 结果表明, 在用CO2, 空气, HNO3, H2O2处理的及未处理的碳黑作载体制得的Pt/C催化剂电极上, 甲醇氧化峰的峰电流密度顺序为39, 33, 32, 20和18 mA•cm-2, 表明用CO2处理的碳载体制备的Pt/C催化剂对甲醇氧化有最好的电催化活性和稳定性. 其主要原因是用CO2处理能减少碳黑表面的含氧基团和增加石墨化程度, 而使碳黑的电阻降低及Pt粒子在碳黑上的分散性变好.  相似文献   

11.
The applicability of elemental phosphorus as a modifier of palladium catalysts for hydrogenation was demonstrated, and the conditions for the synthesis of nanoparticles that are highly efficient in hydrogenation catalysis were optimized. The modifying effect of elemental phosphorus depends on the P/Pd ratio; it is associated with changes in the catalyst dispersity and the nature of the formed nanoparticles containing various palladium phosphides (PdP2, Pd5P2, and Pd6P) and Pd(0) clusters. The main stages of the formation of palladium catalysts for hydrogenation were determined, and a model of an active catalyst, in which the Pd6P phosphide is the core of a nanoparticle and Pd(0) clusters form a shell, was proposed.  相似文献   

12.
As a means for the chemical fixation of carbon dioxide and the synthesis of biodegradable polycarbonates, copolymerizations of carbon dioxide with various epoxides such as cyclohexene oxide (CHO), cyclopetene oxide, 4-vinyl-1-cyclohexene-1,2epoxide, phenyl glycidyl ether, allyl glycidyl ether, propylene oxide, butene oxide, hexene oxide, octene oxide, and 1-chloro-2,3-epoxypropane were investigated in the presence of a double metal cyanide catalyst (DMC). The DMC catalyst was prepared by reacting K3Co(CN)6 with ZnCl2, together with tertiary butyl alcohol and poly(tetramethylene ether glycol) as complexing reagents and was characterized by various spectroscopic methods. The DMC catalyst showed high activity (526.2 g-polymer/g-Zn atom) for CHO/CO2 (PCO2 = 140 psi) copolymerization at 80 °C, to yield biodegradable aliphatic polycarbonates of narrow polydispersity (Mw/Mn = 1.67) and moderate molecular weight (Mn = 8900). The DMC catalyst also showed high activities with different CO2 reactivities for other epoxides to yield various aliphatic polycarbonates with narrow polydispersity.  相似文献   

13.
A new type of phosphino-phosphonium ylide ligand bearing a chiral sulfinyl center affords a P,C-chelated palladium(II) complex with a resolved asymmetric ylidic carbon atom. According to 31P NMR analysis of the crude material, the diastereoselectivity of the complexation at room temperature is ca. 7:1. In the crystal state, an X-ray diffraction analysis of one epimer reveals a quasi C2-symmetric chloro-bridged dinuclear structure, where the (S) configuration of the sulfur atom induces a (S) configuration of the ylidic carbon atom. A in situ Pd(0) catalyst generated from the phosphino-ylide and Pd(PPh3)4 promotes allylic substitution of 3-acetoxy-1,3-diphenylpropene by sodium malonate in 70% yield and 5% e.e.  相似文献   

14.
The precise molecular structure of [PdCl(CH2SCH3)(PPh3)2] has been determined from three-dimensional X-ray diffraction data collected at ?160°C. The CH2Cl2 solvated crystal ([PdCl(CH2SCH3)(PPh3)2 · CH2Cl2]) belongs to the monoclinic system, space group P21/n, with four formula units in a cell of dimensions: a 14.973(3), b 15.333(3), c 17.377(3) Å and β 115.77(1)° at ?160°C. The structure was solved by the conventional heavy atom method and refined by the least-squares procedure to R = 0.035 for observed reflections. The geometry around the palladium atom is square-planar. The phosphorus atoms of the two triphenylphosphine ligands are mutually trans. The CH2SCH3 group is bonded to the palladium atom only through the PdC σ-bond and the sulfur atom is not bonded to the metal atom (PdC(1) 2.061(3), SC(1) 1.796(3), SC(2) 1.817(5), Pd?S 2.973(1) Å, PdC(1)S 100.64(14)° and C(1)SC(2) 101.28(18)°). The structure is in contrast to that of [PdCl(CH2SCH3)(PPh3)], in which both the carbon and sulfur atoms of the CH2SCH3 group are bonded to the palladium atom.  相似文献   

15.
Hydrophosphination of CO2 with 1,3,2‐Diazaphospholene (NHP‐H; 1 ) afforded phosphorus formate (NHP‐OCOH; 2 ) through the formation of a bond between the electrophilic phosphorus atom in 1 and the oxygen atom from CO2, along with hydride transfer to the carbon atom of CO2. Transfer of the formate from 2 to Ph2SiH2 produced Ph2Si(OCHO)2 ( 3 ) in a reaction that could be carried out in a catalytic manner by using 5 mol % of 1 . These elementary reactions were applied to the metal‐free catalytic N‐formylation of amine derivatives with CO2 in one pot under ambient conditions.  相似文献   

16.
Palladium chloride was grafted to amino‐functionalized MCM‐41 to prepare heterogeneous catalysts. XRD, N2 adsorption–desorption isotherms, IR, 13C and 29Si cross‐polarization magic‐angle spinning NMR spectroscopy and XPS techniques were employed to characterize the catalytic materials. The heterogeneous palladium catalyst exhibited excellent catalytic activity for the Heck vinylation of iodobenzene with methyl acrylate, giving 92% yield of methyl cinnamate in the presence of N‐methylpyrrolidone (NMP) and triethylamine (Et3N). The stability of the heterogeneous catalyst was also studied in detail. The catalytic tests showed that the palladium leaching correlated to solvent, base and palladium loading. The heterogeneous catalyst exhibited excellent stability towards loss of activity and palladium leaching was not observed during six recycles in the presence of toluene and Na2CO3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A series of platinum and palladium pincer complexes supported by achiral 1,3-bis(2′-imidazolinyl)benzene-based NCN ligands have been prepared via direct C2 metalation. Meanwhile, ligand precursor 3b and Pt(II) complex 4b were characterized by crystallographic studies, which reveals that the platinum atom in 4b adopts a distorted-square-planar geometry. The Pd(II) pincer complexes 5b was found to be an efficient catalyst for Suzuki cross-coupling reaction of aryl bromides and phenylboronic acid under air. In the presence of 0.5?mol% of Pd(II) 5b in DMF/K3PO4·3H2O for 8?h, the corresponding biaryl products could be obtained in 24–99% yields.  相似文献   

18.
The selective hydrogenations of crotonaldehyde and cinnamaldehyde in the aqueous-benzene biphasic system were investigated using water-soluble palladium complex PdCl2(TPPTS)2 as catalyst. The hydrogenation rate of crotonaldehyde was higher than that of cinnamaldehyde under similar reaction conditions. The palladium complex selectively catalyzed the hydrogenation of CC bond in crotonaldehyde to form butanal (100%). On the contrary, hydrogenation of both CC and CO bonds in cinnamaldehyde occurred simultaneously, with the amount of phenylpropanal only slightly higher than that of phenylpropanol. However, the reduction of CO bond of cinnamaldehyde could be inhibited by the addition of Na2CO3 solution. Therefore, high selectivity to form phenylpropanal (91%) could be obtained by using Na2CO3 solution at pH 12.2. Other factors affecting the hydrogenation conversion and selectivity of crotonaldehyde and cinnamaldehyde were also discussed.  相似文献   

19.
The incorporation of CO2 into organic compounds is currently one of the most active research topics in organic chemistry, because CO2 is an abundant, inexpensive, nontoxic, and renewable C1 source. However, CO2 is also a thermodynamically stable and kinetically inert gaseous compound, and as such, special strategies are required to activate CO2 and incorporate it into organic compounds. In particular, because the carbon atom adjacent to the nitrogen atom of amine derivatives is positively charged, umpolung carboxylation, which is a difficult chemical process, should be considered for the production of α‐amino acids by using CO2. In this Minireview, we summarize recent synthetic methods for α‐amino acids that use CO2 as a carboxylic acid unit.  相似文献   

20.
It was shown for the first time that amorphous phase in an alumina support promotes the formation of palladium particles in a wide size range. This catalyst has a low selectivity to butenes in the 1,3-butadiene hydrogenation. It was suggested that surface palladium aluminates contribute to an increase in butene selectivity up to 99.5% at a hydrogenation temperature of not more than 65 °C. At higher reaction temperatures, the catalyst based on phase-homogeneous γ-Al2O3 has the highest activity and butene selectivity. This catalyst was obtained by the traditional impregnation method and contains highly dispersed palladium particles with a sufficiently high electron density. It was shown that the formation of hydride forms on palladium particles with a size of less than 1 nm was detected by temperature-programmed reduction with hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号