首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
A series of mononuclear MnII and MnIV complexes of general formulae [MnL2(NCS)2] (1a1d) and [Mn(L)2(NCS)2] (2a2c) have been prepared where L are Schiff bases obtained by the condensation of pyridine-2-aldehyde with para-alkyl-substituted aniline, and L are the corresponding amide ligands. The room temperature magnetic susceptibility data of (1a–1d) indicate that MnII is in a high spin state. The cyclic voltammograms of (1a–1d) exhibit a one-electron quasi-reversible MnIIMnIII oxidation. A linear correlation has been found when E0[MnIII/MnII] is plotted against Hammett p parameters. X-ray crystallographic data of (1b) shows that the central MnII ion adopts a distorted octahedral geometry with six different Mn–N distances. Upon oxidation of MnII complexes (1b–1d) by H2O2, the corresponding MnIV complexes (2a–2c) were obtained, and the Schiff base ligands were oxidized to the corresponding amides. The lowest energy LMCT bands of these MnIV complexes correlate linearly with Hammett p parameters. The redox behavior of the MnIV complexes has been investigated by cyclic voltammetry. E.p.r. spectra of the MnII and MnIV complexes are also reported.  相似文献   

2.
Summary Two novel MnII-MnIII-MnII oxalato complexes have been synthesized and characterized, namely [Mn2Mn(ox)3(L)4](ClO4) [L = 1,10-phenanthroline (phen) or 5-nitro-1,10-phenanthroline (NO2-phen), respectively], where ox stands for the oxalate dianion. Based on i.r., elemental analyses and electronic spectra, these complexes are proposed to have extended oxalatobridged structures consisting of MnII and MnIII ions, in which MnIII and each MnII ion has a distorted octahedral environment. The temperature dependence of magnetic susceptibility for [Mn2Mn(ox)3(phen)4] (ClO4) was measured over the 4.1–300 K range and the observed data were successfully simulated by an equation based on the spin-Hamiltonian operator ( = -2J( 1 2 + 2 3)), giving the exchange integral J = -1.57cm–1. This indicates weak antiferromagnetic spin exchange interaction between MnII and MnIII ions.  相似文献   

3.
The reactions of [MnIII(3-MeOSalen)(H2O)2]+ (Salen = N,N-ethylenebis(salicylideneaminato) dianion) with (Et4N)4[M(CN)8] (M = Mo, W) have been investigated and one mononuclear manganese(II) complex [MnII(Salen)(H2O)] (I) and one bimetallic ion-pair complex [MnIII(3-MeO-Salen)(H2O)2]4[W(CN)8] · DMSO · 4H2O (II) were obtained unexpectedly and characterized by element and single crystal structure analysis. Single crystal X-ray diffraction (CIF files CCDC nos. 1456365 (I) and 1456366 (II)) showed that the Mn2+ ion in complex I is five-coordinated involving in a distorted square pyramid. Furthermore, with the help of the intermolecular hydrogen bond interactions, this complex can be constructed into interesting one-dimensional zig-zag chain structure. For complex II, the coordination sphere of Mn3+ ion is an elongated octahedron. Additional, the four mononuclear manganese(III) units are self-complementary through the coordinated aqua ligand from one molecule and the free O(4) compartment from the neighboring molecule, giving supramolecular dimmers structure. Investigation of the magnetic susceptibility of the two complexes reveals the overall weak antiferromagnetic interactions between the adjacent manganese centers caused by H-bond interactions.  相似文献   

4.
Mononuclear [M(hfacac)2(H2biim)] complexes, where M = MnII, FeII, CoII, NiII, CuII or ZnII, hfacac = hexafluoroacetylacetonate, H2biim = 2,2-biimidazole; dinuclear K2[M2(acac)4(-biim)] (M = CuII or ZnII) and tetranuclear K2[M4(acac)8( 4-biim)] (M = CoII or NiII) complexes have been prepared and characterized by chemical analysis, conductance measurements, i.r., electronic and e.p.r. spectroscopies and by magnetic susceptibility measurements (in the 2–300 K range). MnII, FeII and CoII are in a high spin state. The e.p.r. spectra of CuII and MnII compounds have been recorded.  相似文献   

5.
4,4-Bis(chloroacetyl)diphenylmethane has been prepared from ClCH2COCl and Ph2CH2. 4,4-Methylenebis(phenylglyoxylohydroximoyl chloride has also been obtained. Four new substituted 4,4-bis(alkylaminoisonitrosoacetyl)diphenylmethanes (ligands) have been prepared from 4,4-methylenebis(phenylglyoxylohydroximoyl chloride) and the corresponding amines. The NiII, CuII and CoII complexes of these ligands were prepared and their structures were identified using AAS, i.r., 1H-n.m.r. spectral data, elemental analyses and magnetic susceptibility measurements.  相似文献   

6.
The reactions of Mn2+ ion with 4-nitrobenzene-1,2-bicarboxylic acid in the presence of bipyridyl-type coligands gave two new manganese(II) coordination polymers, [Mn2(Nbdc)2(Bipyp)(H2O)4] n (I) and [Mn2(Nbdc)2(Bipye)(H2O)4] n (II) (H2Nbdc = 4-nitrobenzene-1,2-bicarboxylic acid, Bipyp = 1,3-bi(4-pyridyl)propane, and Bipye = 1,2-bi(4-pyridyl)ethane). Both two complexes contain uniform carboxyl-bridged manganese chains with the composition of [Mn2(Nbdc)2(H2O)4] n , which are interlinked by interchain Bipyp/Bipye spacers to afford two closely-related layers (CIF files CCDC nos. 1008182 (I) and 1008183 (II)). Magnetic studies for two compounds show the presence of similar antiferromagnetic couplings between the adjacent Mn2+ ions through the carboxyl bridges, the best fittings to the experimental magnetic susceptibilities gave J =–0.20 cm–1 and g = 1.96 for I, and J =–0.24 cm–1 and g = 1.98 for II. Similar magnetic parameters and thermal behaviors further verify that two compounds possess closely-related structures.  相似文献   

7.
A new tetranuclear manganese complex [Mn2IIMn2III(bhmcpH)2(hmp)4Cl2(MeOH)2] ( 1 ) [bhmcpH3 = 2, 6‐bis(hydroxymethyl)‐4‐chlorophenol, hmpH = 2‐(hydroxymethyl)pyridine] was synthesized and characterized. X‐ray diffraction analyses reveal that complex 1 crystallizes in the monoclinic space group P21/c. It has a mixed‐valence tetranuclear dicubane unit, which comprises two MnII and two MnIII ions. The temperature dependence of the magnetic susceptibilities of 1 indicates ferromagnetic interactions between the manganese ions.  相似文献   

8.
The synthesis and characterization of a new unsymmetrical dinucleating N,O‐donor ligand, 2‐[N,N‐bis­(2‐pyridyl­methyl)­amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methyl­phenol (H2Ldtb), as well as the X‐ray crystal structure of its corresponding mixed‐valence diacetate‐bridged manganese complex, di‐μ‐acetato‐μ‐{2‐[N,N‐bis­(2‐pyridylmethyl)amino­methyl]‐6‐[N‐(3,5‐di‐tert‐butyl‐2‐oxidobenzyl)‐N‐(2‐pyridyl­amino)­aminomethyl]‐4‐methylphenolato}dimanganese(II,III) tetra­phenyl­borate, [MnIIMnIII(C42H49N5O2)(C2H3O2)2](C24H20B), are reported. The complex may be regarded as an inter­esting structural model for the mixed‐valence MnII–MnIII state of manganese catalase.  相似文献   

9.
A tetranuclear manganese complex of the composition {Mn4[(Py)C(Ph)NO]4(CH3CH2OH)3(CH3CH2O)Cl3}·2H2O ( 1 ) was synthesized by solvothermal reaction, and characterized by X‐ray single crystal diffraction, IR spectroscopy, and elemental analysis. X‐ray analysis revealed that complex 1 contains a [Mn4(NO)4]4+ core with three MnII atoms displaying distorted octahedral arrangements and one MnII ion exhibiting a trigonal bipyramidal arrangement. Low‐temperature magnetic susceptibility measurement for the solid sample of 1 revealed antiferromagnetic MnII ··· MnII interactions.  相似文献   

10.
A number of mononuclear manganese(II) and manganese(III) complexes have been synthesized from tridentate N2O aminophenol ligands (HL1–HL5) formed by reduction of corresponding Schiff bases with NaBH4. Three types of tridentate N2O aminophenols have been prepared by reducing with NaBH4which are (a) Schiff bases obtained by bromo salicylaldehyde reaction with N,N-dimethyl/N,N-diethyl ethylene diamine (HL1, HL2), (b) Schiff bases obtained by condensing salicylaldehyde/bromo salicylaldehyde and picolyl amine (HL3, HL4), (c) pyridine-2-aldehyde and 2-aminophenol (HL5). All the manganese complexes have been prepared by direct addition of manganese perchlorate to the corresponding ligands and were characterized by the combination of i.r., u.v.–vis spectroscopy, magnetic moments and electrochemical studies. The u.v.–vis spectra of all of the manganese(III) complexes show two weak d–d transitions in the 630–520 nm region, which support a distorted octahedral geometry. The electron transfer properties of all of the manganese(III) complexes (1–4 and 6) exhibit mostly similar characteristics consisting two redox couples corresponding to the MnIII → MnII reductions and MnIII → MnIV oxidations. The electronic effect on the potential has also been studied by changing different substituents in the ligands. In all cases, an electron-donating group stabilizes the higher oxidation state and electron withdrawing group prefers the lower oxidation state. The cyclic voltammogram of [MnII(L5)2] shows an irreversible oxidation MnII → MnIII at −0.88 V, followed by another quasi-reversible oxidation MnIII → MnIV at +0.48 V. The manganese(III) complex (3) [Mn(L3)2]ClO4has been characterized by X-ray crystallography.  相似文献   

11.
The title complex [Mn2(phen)4(FCA)2](ClO4)2·H2O (1) (FCA = dianion of 3-ferrocenyl-2-crotonic acid, phen = 1,10-phenanthroline) has been prepared, and its structure determined by single crystal X-ray diffraction analysis. The structure consists of a dinuclear cation [Mn2(phen)4(FCA)2]2+, non-coordinated perchlorate anions and a water molecule. The two MnII ions are separated by 4.374 Å in the cation and are dicarboxylate-bridged by carboxylate ligands containing ferrocenyl units. Each FCA is bound to two MnII ions through carboxylate oxygens with the synanti bridging mode. The MnII ion is coordinated in an octahedral N4O2 geometry by two chelate phen ligands and two -carboxylate oxygen atoms. Electrochemical properties of (1) are discussed.  相似文献   

12.
The reaction of MnII and [NEt4]CN leads to the isolation of solvated [NEt4]Mn3(CN)7 ( 1 ) and [NEt4]2Mn3(CN)8 ( 2 ), which have hexagonal unit cells [ 1 : R$\bar 3$ m, a=8.0738(1), c=29.086(1) Å; 2 : P$\bar 3$ m1, a=7.9992(3), c=14.014(1) Å] rather than the face centered cubic lattice that is typical of Prussian blue structured materials. The formula units of both 1 and 2 are composed of one low‐ and two high‐spin MnII ions. Each low‐spin, octahedral [MnII(CN)6]4? bonds to six high‐spin tetrahedral MnII ions through the N atoms, and each of the tetrahedral MnII ions are bound to three low‐spin octahedral [MnII(CN)6]4? moieties. For 2 , the fourth cyanide on the tetrahedral MnII site is C bound and is terminal. In contrast, it is orientationally disordered and bridges two tetrahedral MnII centers for 1 forming an extended 3D network structure. The layers of octahedra are separated by 14.01 Å (c axis) for 2 , and 9.70 Å (c/3) for 1 . The [NEt4]+ cations and solvent are disordered and reside between the layers. Both 1 and 2 possess antiferromagnetic superexchange coupling between each low‐spin (S=1/2) octahedral MnII site and two high‐spin (S=5/2) tetrahedral MnII sites within a layer. Analogue 2 orders as a ferrimagnet at 27(±1) K with a coercive field and remanent magnetization of 1140 Oe and 22 800 emuOe mol?1, respectively, and the magnetization approaches saturation of 49 800 emuOe mol?1 at 90 000 Oe. In contrast, the bonding via bridging cyanides between the ferrimagnetic layers leads to antiferromagnetic coupling, and 3D structured 1 has a different magnetic behavior to 2 . Thus, 1 is a Prussian blue analogue with an antiferromagnetic ground state [Tc=27 K from d(χT)/dT].  相似文献   

13.
Summary The metal complexes of the type [M(SB)2(H2O)2] and [M(SB)2][where M = MnII, CoII, NiII or CuII, M = ZnII CdII, HgII and PbII and SBH = 2-(2-hydroxyacetophenone)imino-5-(p-anisyl)-1,3,4-oxadiazole] have been prepared and characterised by elemental analyses, thermal analyses, magnetic measurements, electronic and infrared spectral studies. The complexes [M(SB)2(H2O)2] possess octahedral structures, whereas complexes [M(SB)2] are tetrahedral. The crystal field parameters of the CoII and NiII complexes are also calculated.  相似文献   

14.
New hexanuclear Fe(III)–Mn(II, III) pivalates [Fe2 III Mn4 II(O)2(Piv)10(HPiv)4] (I) or [Fe4 III Mn2 III(O)2(Piv)12(CH2O2)(HPiv)2] · Et2O (II) are synthesized using the solid-state thermolysis of [Fe2Mn(O)(Piv)6(HPiv)3] (90°С). Complexes I and II differ by the ratio of iron and manganese ions, which depends on the atmospheric composition during thermolysis. The structures of compounds I and II are determined by X-ray diffraction studies. According to the parameters of the Mössbauer spectrum, complex I contains the Fe3+ ions in the high-spin state in the octahedral environment of oxygen atoms.  相似文献   

15.
Two mixed-valence Mn(II,IV) complexes, [MnII4MnIV3(teaH)3(tea)(thmeH)3(thme)](ClO4)2·3MeCN (1) and [MnII2MnIV2(edteH)2(peolH)2]·4MeOH (2), where H4edte = N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine, teaH3 = tris(2-hydroxyethyl)amine, H4peol = pentaerythritol, and H3thme = 1,1,1-tris(hydroxymethyl)ethane, were prepared from the corresponding manganese salts and mixed ligands with polyalcohols. The two clusters consist of a trapped-valence polynuclear core comprising 4MnII and 3MnIV for 1, 2MnII and 2MnIV ions for 2. Complex 1 crystallizes in the rhombohedral space group R3c, while 2 crystallizes in the monoclinic space group P21/c. Complex 1 consists of a near-planar Mn7 unit that comprises a Mn6 hexagon of alternating MnII and MnIV ions surrounding a central MnII ion. The remaining coordinated sites are occupied by eight different deprotonation degrees of H3tea or H3thme. The tetranuclear cluster of 2 consists of a fused defective dicubane Mn4O6 core, and the four Mn ions are coordinated by oxygens from edteH3? and peolH3? into an unusual butterfly-like [MnII2MnIV2] topology. The two clusters are also characterized by mass spectra and X-ray photoelectron spectroscopy. Direct current magnetization studies reveal ferromagnetic interactions within both Mn clusters.  相似文献   

16.
Two different charge distributions of the complex cation [MnIII(cth)(diox)]+ (cth=a tetraazamacrocycle, diox=3,5-di-tert-butyl-o-benzoquinone; structure shown in the picture) can be isolated by varying the counteranion: [MnIII(cth)(cat)]BPh4 and [MnII(cth)(sq)]ClO4 (cat and sq denote the catecholato and semiquinonato forms of the ligand). The complex undergoes noncooperative entropy-driven valence tautomeric transitions.  相似文献   

17.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

18.
New mixed ligand complexes of benzoyldithiocarbazate (H2BDT) have been synthesized and characterized by elemental analyses, spectral studies (i.r., u.v.–vis., mass), thermal analysis and electrical conductivity measurements. The complexes have the general formulae: [M2(BDT)(OX)2] · xH2O; [Co2(BDT)(OX)2(H2O)4]; [M(HBDT)(OX)-(H2O)], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n where M = MnII, NiII and CuII; BDT = dithiocarbazate dianion; OX = 8-hydroxyquinolinate; x = 1 or 2; M = ZnII or CdII; HBDT = dithiocarbazate anion and L = 2,2-bipyridyl or 1,10-o-phenanthroline. For the [M2(BDT)(OX)2] · xH2O, [Co2(BDT)(OX)2(H2O)4], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n complexes, benzoyldithiocarbazate acts as a dibasic-tetradentate ligand in the enol form via the enolic oxygen, the hydrazide nitrogens and the thiolate sulphur, while it acts as a monobasic-tridentate ligand in the keto form in the [M(HBDT)(OX)(H2O)] complexes. The thermal behaviour of the complexes has been studied by t.g.–d.t.g. techniques. Kinetic parameters of the thermal decomposition process have been computed by Coats–Redfern and Horowitz–Metzger methods. It is obvious that the thermal decomposition in the complexes occurs directly at the metal–ligand bonds except for the ZnII and CdII complexes in which decomposition seems to be at a point in the benzoyldithiocarbazate moiety. From the calculated kinetic data it can be concluded that the dehydration processes in all complexes have been described as phase-boundary controlled reactions. The activation energy values reveal that the thermal stabilities of the homobimetallic complexes lie in the order: MnII < NiII < CoII, while the monomeric CdII complex has more enhanced thermal stability than the ZnII complex.  相似文献   

19.
20.
Summary Reactions of bis(1-oxopyridine-2-thione) NiII or CuII with 2,2-bipyridine (bipy) or 1,10-phenanthroline (phen) yield complexes of stoichiometry: Ni(C5H4NOS)2L {L = bipy, two isomers: (1) and (2), L = phen, one isomer (3)} and Cu(C5H4NOS)2(phen)·0.75CHCl3 (4). The spectroscopy (i.r., u.v.-vis., e.s.r.) and magnetism studies of the above complexes are described. On the basis of conductivity, the CuII-phen complex has been formulated as [Cu(C5H4NOS)(phen)2][Cu(C5H4NOS)3]·1.5CHCl3 (4). The vis. absorption spectra support similar octahedral structures for the minor bipy isomer (2) and for the NiII-phen complex [(3)], whereas the major isomer [(1)] has a different structure. The e.s.r. spectrum of the CuII-phen complex (4) is commensurate with an elongated octahedral structure. New methods for the preparation and spectroscopy of M(C5H4NOS)2 (M = Mn, Ni, Cu or Zn) compounds have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号