首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Narendra Singh 《Optik》2010,121(10):918-925
We propose a new method for image encryption using improper Hartley transform and chaos theory. Improper Hartley transform is a Hartley transform in which the phase between the two Fourier transforms is a fractional multiple of π/2. This fractional order is called fractional parameter and serves as a key in the image encryption and decryption process. Four types of chaos functions have been used. These functions are the logistic map, the tent map, the Kaplan-Yorke map and the Ikeda map. Random intensity masks have been generated using these chaotic functions and are called chaotic random intensity masks. The image is encrypted by using improper Hartley transform and two chaotic random intensity masks. The mean square error has been calculated. The robustness of the proposed technique in terms of blind decryption has been tested. The computer simulations are presented to verify the validity of the proposed technique.  相似文献   

2.
We propose a new method for image encryption, using gyrator transform and chaos theory. Random phase masks are generated using chaos functions and are called as chaotic random phase masks. In the proposed technique, the image is encrypted using gyrator transform and two chaotic random phase masks. Three types of chaos functions have been used to generate the chaotic random phase masks. These chaos functions are the logistic map, the tent map and the Kaplan-Yorke map. The computer simulations are presented to verify the validity of the proposed technique. The mean square errors have been calculated. The robustness of the proposed technique to blind decryption in terms of rotation angle and the seed values of the chaotic random phase mask have been evaluated. The optical implementation of the encryption and the decryption technique has been proposed.  相似文献   

3.
A double image encryption method is proposed by utilizing discrete multiple-parameter fractional Fourier transform and chaotic maps. One of the two original images scrambled by one chaotic map is encoded into the amplitude of a complex signal with the other original image as its phase. The complex signal multiplied by another chaotic random phase mask is then encrypted by discrete multiple-parameter fractional Fourier transform. The parameters in chaotic map and discrete multiple-parameter fractional Fourier transform serve as the keys of this encryption scheme. Numerical simulations have been done to demonstrate the performance of this algorithm.  相似文献   

4.
In order to utilize the space of an input plane efficiently and make the optical structure more flexible, an image displacement measurement based on phase-encoded reference joint fractional transform correlator (PER-JFrTC) is proposed. We use a random phase mask to encode the reference image and overlay it with the target image forming the input image. Joint power spectrum (JPS) of the input image is obtained by Fourier transform and the resultant is encoded by the same phase mask. Then a fractional Fourier transform with an order p is applied to the phase-encoded JPS (PJPS), resulting in a correlation output with a sharp cross-correlation peak, which includes the displacement information between the reference and the target image. Contrast to displacement measurement based on traditional joint transform correlator (JTC), PER-JFrTC can use the space of the input plane efficiently and reduces the influence of the auto-correlation. Also the position of cross-correlation peak can be fixed arbitrarily according to the fractional order p as well as the optical set-up can be more flexible and easier to implement. Results based on digital computation show that PER-JFrTC could detect the displacement accurately and verify our proposal. A possible optical set-up is suggested.  相似文献   

5.
Narendra Singh 《Optik》2010,121(15):1427-1437
We propose a new method for digital image watermarking using gyrator transform and chaotic maps. Four chaotic maps have been used in the proposed technique. The four chaotic maps that have been used are the logistic map, the tent map, the Kaplan-Yorke map and the Ikeda map. These chaotic maps are used to generate the random phase masks and these random phase masks are known as chaotic random phase masks. A new technique has been proposed to generate the single chaotic random phase mask by using two chaotic maps together with different seed values. The watermark encoding method in the proposed technique is based on the double random phase encoding method. The gyrator transform and two chaotic random phase masks are used to encode the input image. The mean square error, the peak signal-to-noise ratio and the bit error rate have been calculated. Robustness of the proposed technique has been evaluated in terms of the chaotic maps, the number of the chaotic maps used to generate the CRPM, the rotation angle of the gyrator transform and the seed values of the chaotic random phase masks. Optical implementation of the technique has been proposed. The computer simulations are presented to verify the validity of the proposed technique.  相似文献   

6.
Optical image encryption using Hartley transform and logistic map   总被引:1,自引:0,他引:1  
We propose a new method for image encryption using Hartley transform with jigsaw transform and logistic map. Logistic map has been used to generate the random intensity mask which is known as chaotic random intensity mask. The problem of bare decryption with Hartley transform has been solved by using the jigsaw transform. In the proposed technique, the image is encrypted using two methods in which the second method is the extension of the first method. In the first method, the image is encrypted using Hartley transform and jigsaw transform. In the second method, the image is encrypted using Hartley transform, jigsaw transform and logistic map. The mean square errors and the signal to noise ratio have been calculated. Robustness of the technique in terms of blind decryption and the algorithmic complexity has been evaluated. The optical implementation has been proposed. The computer simulations are presented to verify the validity of the proposed technique.  相似文献   

7.
We present a new optical image encryption algorithm that is based on extended fractional Fourier transform (FRT) and digital holography technique. We can perform the encryption and decryption with more parameters compared with earlier similar methods in FRT domain. In the extended FRT encryption system, the input data to be encrypted is extended fractional Fourier transformed two times and random phase mask is placed at the output plane of the first extended FRT. By use of an interference with a wave from another random phase mask, the encrypted data is stored as a digital hologram. The data retrieval is operated by all-digital means. Computer simulations are presented to verify its validity and efficiency.  相似文献   

8.
A double image encryption method is proposed using fractional Fourier-domain random encoding and pixel scrambling technique. One of the two original images is encoded into the phase function of a synthesized input signal after being scrambled, and the other original image encoded into its amplitude. The phase function serves as phase mask in the input domain, and the synthesized input signal is then encrypted into stationary white noise by utilizing random phase encoding in fractional Fourier domain. The two original images can be retrieved without cross-talk by using the correct keys with fractional orders, the random phase mask and the pixel scrambling operator. Numerical simulations and security analysis have been done to prove the validity and the security of the proposed encryption method.  相似文献   

9.
孙杰 《光学技术》2017,43(3):279-283
为了扩展双图像光学加密算法的密钥空间,克服双随机相位加密系统中随机相位掩模作为密钥难于存储、传输和重构的问题,突破传统图像加密的研究思路,提出了一种基于多混沌系统的双图像加密算法,构造了光学加密系统。系统增加混沌系统参数作为密钥,利用混沌加密密钥空间大和图像置乱隐藏性好的特点,构建基于Logistic混沌映射的图像置乱算法,利用Kent混沌映射生成的伪随机序列构造出一对随机相位掩模,分别放置在分数傅里叶变换光学装置的两端,图像经加密系统变换后得到密文。数值仿真结果表明,算法的密钥敏感性极高,能够有效地对抗统计攻击,具有较高的安全性。  相似文献   

10.
In this paper two new architectures for optical image verification are proposed. Both architectures are based on conventional joint transform correlators (JTCs) adopting a Fourier hologram and can significantly improve the recovered image quality. First, an input phase-only function is Fourier transformed and then interferes with a reference wave that is diffracted from a plane wave incident on another random phase mask. Second, two phase-only functions are placed at the two input sides of a beamsplitter such that the interference pattern of their Fourier transforms can be detected. To obtain a predefined target image in the output plane, one of the input phase functions is iteratively retrieved by the use of the projection onto constraint sets algorithm. Simulation results show that the less mean squared error and better image quality are obtained for both the binary and grayscale images.  相似文献   

11.
A novel double-image encryption algorithm is proposed, based on discrete fractional random transform and chaotic maps. The random matrices used in the discrete fractional random transform are generated by using a chaotic map. One of the two original images is scrambled by using another chaotic map, and then encoded into the phase of a complex matrix with the other original image as its amplitude. Then this complex matrix is encrypted by the discrete fractional random transform. By applying the correct keys which consist of initial values, control parameters, and truncated positions of the chaotic maps, and fractional orders, the two original images can be recovered without cross-talk. Numerical simulation has been performed to test the validity and the security of the proposed encryption algorithm. Encrypting two images together by this algorithm creates only one encrypted image, whereas other single-image encryption methods create two encrypted images. Furthermore, this algorithm requires neither the use of phase keys nor the use of matrix keys. In this sense, this algorithm can raise the efficiency when encrypting, storing or transmitting.  相似文献   

12.
We propose a method for the encryption of twin color images using fractional Fourier transform (FRT). The color images to be encrypted are converted into the indexed image formats before being processed through twin image encryption algorithm based on the FRT. The proposed algorithm uses one random code in the image domain and one random phase code in the FRT domain to perform double image encryption. The conversion of both the input RGB images into their indexed formats facilitates single-channel processing for each image, and is more compact and robust as compared to multichannel techniques. Different fractional orders, the random masks in image- and FRT domain are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption schemes are discussed, and results of digital simulation are presented. We examine sensitivity of the proposed scheme against the use of unauthorized keys (e.g. incorrect fractional orders, incorrect random phase mask etc.). Robustness of the method against occlusion and noise has also been discussed.  相似文献   

13.
为了实现对两幅图像进行同步加密,降低传输负载并提高密文的抗明文攻击能力,提出了离散分数阶随机变换与加权像素混沌置乱的双图像加密算法。将2个分阶参数引入到Tent映射中,设计了新的Tent映射;根据明文像素值,构建加权像素直方图模型,联合位外部密钥,生成改进的Tent映射的初值;再利用初值对分数阶Tent映射进行迭代,输出2组随机序列,对2幅明文进行位置交叉混淆,获取2个置乱密文;基于DWT(discrete wavelet transform)技术,对2个置乱密文进行稀疏表示;根据混沌序列,定义随机循环矩阵,联合稀疏表示,获取2个置乱密文对应的测量矩阵。根据随机掩码与调制相位掩码,建立数据融合模型,将2个测量矩阵组合为复合矩阵;基于离散分数阶随机变换,对复合图像进行扩散,获取密文。测试数据显示:与已有的多图像加密方案相比,该算法的抗明文攻击能力与用户响应值更理想,密文的NPCR、UACI值分别达到了99.83%、34.57%。该算法具有较高的加密安全性,能够有效抵御网络中的外来攻击,确保图像安全传输。  相似文献   

14.
In this paper, we implement a fully phase-encrypted memory system using cascaded extended fractional Fourier transform (FRT). We encrypt and decrypt a two-dimensional image obtained from an amplitude image. The full phase image to be encrypted is fractional Fourier transformed three times and random phase masks are placed in the two intermediate planes. Performing the FRT three times increases the key size, at an added complexity of one more lens. The encrypted image is holographically recorded in a photorefractive crystal and is then decrypted by generating through phase conjugation, the conjugate of the encrypted image. A lithium niobate crystal has been used as a phase contrast filter to reconstruct the decrypted phase image, alleviating the need of alignment in the Fourier plane making the system rugged.  相似文献   

15.
In this paper, we have described a simple and secure double random phase encoding and decoding system to encrypt and decrypt a two-dimensional gray scale image. We have used jigsaw transforms of the second random phase mask and the encrypted image. The random phase mask placed in the Fourier plane is broken into independent non-overlapping segments by applying the jigsaw transform. To make the system more secure, a jigsaw transform on the encrypted image is also carried out. The encrypted image is also broken into independent non-overlapping segments. The jigsaw transform indices of random phase code and the encrypted image form the keys for the successful retrieval of the data. Encrypting with this technique makes it almost impossible to retrieve the image without using both the right keys. Results of computer simulation have been presented in support of the proposed idea. Mean square error (MSE) between the decrypted and the original image has also been calculated in support of the technique.  相似文献   

16.
A new method for image encryption using integral order radial Hilbert transform (RHT) filter in the fractional Fourier transform (FRT) domain has been proposed. The technique is implemented using the popular double random phase encoding method in the fractional Fourier domain. The random phase masks (RPMs), integral orders of the RHT, fractional orders of FRT, and indices of the Jigsaw transform (JT) have been used as keys for encryption and decryption. Simulation results have been presented and the schematic representation for optical implementation has been proposed. The mean-square-error and signal-to-noise ratio between the decrypted image and the input image have been calculated for the correct as well as incorrect orders of the RHT. Effect of occlusion and noise on the performance of the proposed scheme has also been studied. The robustness of the technique has been verified against attack using partial windows of the correct random phase masks. Similar investigations have also been carried out for the chosen-, and the known-plain-text attacks.  相似文献   

17.
Chaos based multiple image encryption using multiple canonical transforms   总被引:2,自引:0,他引:2  
We propose a new method for multiple image encryption using linear canonical transforms and chaotic maps. Three linear canonical transforms and three chaotic maps are used in the proposed technique. The three linear canonical transforms that have been used are the fractional Fourier transform, the extended fractional Fourier transform and the Fresnel transform. The three chaotic maps that have been used are the tent map, the Kaplan-Yorke map and the Ikeda map. These chaotic maps are used to generate the random phase masks and these random phase masks are known as chaotic random phase masks. The mean square error and the signal to noise ratio have been calculated. Robustness of the proposed technique to blind decryption has been evaluated. Optical implementation of the technique has been proposed. Experimental and simulations results are presented to verify the validity of the proposed technique.  相似文献   

18.
We propose a non-linear image encryption scheme for RGB images, using natural logarithms and fractional Fourier transform (FRT). The RGB image is first segregated into the component color channels and each of these components is hidden inside a random mask (RM) using base changing rule of logarithms. Subsequently, these channels are encrypted independently using random phase masks (RPMs) and the FRT. The fractional orders of the FRT, input random masks and random phase masks used in each channel serve as the keys for encryption and decryption. The algorithms to implement the proposed scheme are discussed, and results of digital simulation are presented. The robustness of the technique is analyzed against the variation in fractional orders of the FRT, change of RMs and RPMs, and occlusion of the encrypted data, respectively. Performance of the scheme has also been studied against the attacks using noise and partial windows of the correct RPMs. The proposed technique is shown to perform better against some attacks in comparison to the conventional linear methods.  相似文献   

19.
A digital technique for multiplexing and encryption of four RGB images has been proposed using the fractional Fourier transform (FRT). The four input RGB images are first converted into their indexed image formats and subsequently multiplexed into a single image through elementary mathematical steps prior to the encryption. The encryption algorithm uses two random phase masks in the input- and the FRT domain, respectively. These random phase masks are especially designed using the input images. As the encryption is carried out through a single channel, the technique is more compact and faster as compared to the multichannel techniques. Different fractional orders, the random masks in input-, and FRT domain are the keys for decryption as well as de-multiplexing. The algorithms to implement the proposed multiplexing-, and encryption scheme are discussed, and results of digital simulation are presented. Simulation results show that the technique is free from cross-talk. The performance of the proposed technique has also been analyzed against occlusion, noise, and attacks using partial windows of the correct random phase keys. The robustness of the technique against known-, and chosen plain-text attacks has also been explained.  相似文献   

20.
A novel optical image encryption method is proposed, based on gyrator transform and phase-shifting interferometry. The input two-dimensional image to be encrypted is gyrator transformed two times, and two random phase masks are placed at the input plane and the output plane of the first gyrator transform. Two-step phase-shifting interferometry is used to record the digital holograms of the input image encrypted by use of double-random phase encoding technique in gyrator transform domain. The rotation angles of gyrator transform, the random phase mask in the gyrator plane and the arbitrary phase shift used for recording form the keys for decryption of the input image. Numerical simulations are presented to verify its validity and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号