首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motivated by our recent works on optimality conditions in discrete optimal control problems under a nonconvex cost function, in this paper, we study second-order necessary and sufficient optimality conditions for a discrete optimal control problem with a nonconvex cost function and state-control constraints. By establishing an abstract result on second-order optimality conditions for a mathematical programming problem, we derive second-order necessary and sufficient optimality conditions for a discrete optimal control problem. Using a common critical cone for both the second-order necessary and sufficient optimality conditions, we obtain “no-gap” between second-order optimality conditions.  相似文献   

2.
This paper presents a second-order analysis for a simple model optimal control problem of a partial differential equation, namely, a well-posed semilinear elliptic system with constraints on the control variable only. The cost to be minimized is a standard quadratic functional. Assuming the feasible set to be polyhedric, we state necessary and sufficient second-order optimality conditions, including a characterization of the quadratic growth condition. Assuming that the second-order sufficient condition holds, we give a formula for the second-order expansion of the value of the problem as well as the directional derivative of the optimal control, when the cost function is perturbed. Then we extend the theory of second-order optimality conditions to the case of vector-valued controls when the feasible set is defined by local and smooth convex constraints. When the space dimension n is greater than 3, the results are based on a two norms approach, involving spaces L 2 and L s , with s>n/2 . Accepted 27 January 1997  相似文献   

3.
This paper studies second-order optimality conditions for a semilinear elliptic optimal control problem with mixed pointwise constraints. We show that in some cases, there is a common critical cone under which the second-order necessary and sufficient optimality conditions for the problem are valid. Our results approach to a theory of no-gap second-order conditions. In order to obtain such results, we reduce the problem to a special mathematical programming problem with polyhedricity constraint set. We then use some tools of variational analysis and techniques of semilinear elliptic equations to analyze second-order conditions.  相似文献   

4.
《Optimization》2012,61(5):489-503
We introduce a notion of a second-order invex function. A Fréchet differentiable invex function without any further assumptions is second-order invex. It is shown that the inverse claim does not hold. A Fréchet differentiable function is second-order invex if and only if each second-order stationary point is a global minimizer. Two complete characterizations of these functions are derived. It is proved that a quasiconvex function is second-order invex if and only if it is second-order pseudoconvex. Further, we study the nonlinear programming problem with inequality constraints whose objective function is second-order invex. We introduce a notion of second-order type I objective and constraint functions. This class of problems strictly includes the type I invex ones. Then we extend a lot of sufficient optimality conditions with generalized convex functions to problems with second-order type I invex objective function and constraints. Additional optimality results, which concern type I and second-order type I invex data are obtained. An answer to the question when a kernel, which is not identically equal to zero, exists is given.  相似文献   

5.
The present paper studies a new class of problems of optimal control theory with Sturm–Liouville-type differential inclusions involving second-order linear self-adjoint differential operators. Our main goal is to derive the optimality conditions of Mayer problem for differential inclusions with initial point constraints. By using the discretization method guaranteeing transition to continuous problem, the discrete and discrete-approximation inclusions are investigated. Necessary and sufficient conditions, containing both the Euler–Lagrange and Hamiltonian-type inclusions and “transversality” conditions are derived. The idea for obtaining optimality conditions of Mayer problem is based on applying locally adjoint mappings. This approach provides several important equivalence results concerning locally adjoint mappings to Sturm–Liouville-type set-valued mappings. The result strengthens and generalizes to the problem with a second-order non-self-adjoint differential operator; a suitable choice of coefficients then transforms this operator to the desired Sturm–Liouville-type problem. In particular, if a positive-valued, scalar function specific to Sturm–Liouville differential inclusions is identically equal to one, we have immediately the optimality conditions for the second-order discrete and differential inclusions. Furthermore, practical applications of these results are demonstrated by optimization of some “linear” optimal control problems for which the Weierstrass–Pontryagin maximum condition is obtained.  相似文献   

6.
《Optimization》2012,61(9):1719-1747
ABSTRACT

By utilizing a min-biaffine scalarization function, we define the multivariate robust second-order stochastic dominance relationship to flexibly compare two random vectors. We discuss the basic properties of the multivariate robust second-order stochastic dominance and relate it to the nonpositiveness of a functional which is continuous and subdifferentiable everywhere. We study a stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and develop the necessary and sufficient conditions of optimality in the convex case. After specifying an ambiguity set based on moments information, we approximate the ambiguity set by a series of sets consisting of discrete distributions. Furthermore, we design a convex approximation to the proposed stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and establish its qualitative stability under Kantorovich metric and pseudo metric, respectively. All these results lay a theoretical foundation for the modelling and solution of complex stochastic decision-making problems with multivariate robust second-order stochastic dominance constraints.  相似文献   

7.
Second-Order Optimality Conditions in Multiobjective Optimization Problems   总被引:3,自引:0,他引:3  
In this paper, we develop second-order necessary and sufficient optimality conditions for multiobjective optimization problems with both equality and inequality constraints. First, we generalize the Lin fundamental theorem (Ref. 1) to second-order tangent sets; then, based on the above generalized theorem, we derive second-order necessary and sufficient conditions for efficiency.  相似文献   

8.
In this paper we study second-order optimality conditions for the multi-objective programming problems with both inequality constraints and equality constraints. Two weak second-order constraint qualifications are introduced, and based on them we derive several second-order necessary conditions for a local weakly efficient solution. Two second-order sufficient conditions are also presented.  相似文献   

9.
In recent years second-order sufficient conditions of an isolated local minimizer for convex composite optimization problems have been established. In this paper, second-order optimality conditions are obtained of aglobal minimizer for convex composite problems with a non-finite valued convex function and a twice strictly differentiable function by introducing a generalized representation condition. This result is applied to a minimization problem with a closed convex set constraint which is shown to satisfy the basic constraint qualification. In particular, second-order necessary and sufficient conditions of a solution for a variational inequality problem with convex composite inequality constraints are obtained. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

10.
Parametric nonlinear control problems subject to vector-valued mixed control-state constraints are investigated. The model perturbations are implemented by a parameter p of a Banach-space P. We prove solution differentiability in the sense that the optimal solution and the associated adjoint multiplier function are differentiable functions of the parameter. The main assumptions for solution differentiability are composed by regularity conditions and recently developed second-order sufficient conditions (SSC). The analysis generalizes the approach in [16, 20] and establishes a link between (1) shooting techniques for solving the associated boundary value problem (BVP) and (2) SSC. We shall make use of sensitivity results from finite-dimensional parametric programming and exploit the relationships between the variational system associated to BVP and its corresponding Riccati equation.Solution differentiability is the theoretical backbone for any numerical sensitivity analysis. A numerical example with a vector-valued control is presented that illustrates sensitivity analysis in detail.  相似文献   

11.
We consider a class of optimization problems with switch-off/switch-on constraints, which is a relatively new problem model. The specificity of this model is that it contains constraints that are being imposed (switched on) at some points of the feasible region, while being disregarded (switched off) at other points. This seems to be a potentially useful modeling paradigm, that has been shown to be helpful, for example, in optimal topology design. The fact that some constraints “vanish” from the problem at certain points, gave rise to the name of mathematical programs with vanishing constraints (MPVC). It turns out that such problems are usually degenerate at a solution, but are structurally different from the related class of mathematical programs with complementarity constraints (MPCC). In this paper, we first discuss some known first- and second-order necessary optimality conditions for MPVC, giving new very short and direct justifications. We then derive some new special second-order sufficient optimality conditions for these problems and show that, quite remarkably, these conditions are actually equivalent to the classical/standard second-order sufficient conditions in optimization. We also provide a sensitivity analysis for MPVC. Finally, a relaxation method is proposed. For this method, we analyze constraints regularity and boundedness of the Lagrange multipliers in the relaxed subproblems, derive a sufficient condition for local uniqueness of solutions of subproblems, and give convergence estimates. Research of the first author was supported by the Russian Foundation for Basic Research Grants 07-01-00270, 07-01-00416 and 07-01-90102-Mong, and by RF President’s Grant NS-9344.2006.1 for the support of leading scientific schools. The second author was supported in part by CNPq Grants 301508/2005-4, 490200/2005-2 and 550317/2005-8, by PRONEX-Optimization, and by FAPERJ.  相似文献   

12.
In order to tighten the gap between necessary and sufficient conditions, new second-order sufficient conditions are developed for optimal control problems, where the control set is given by smooth functions. When the control set is polyhedral, our criterion generalizes prior results of the same kind, namely, the Jacobi criterion in Hamiltonian form and that in Lagrangian form (Refs. 1–3).The research of V. Zeidan was supported by NSERC Grant A-8570, which is gratefully acknowledged.  相似文献   

13.
First-order and second-order necessary and sufficient optimality conditions are given for infinite-dimensional programming problems with constraints defined by arbitrary closed convex cones. The necessary conditions are immediate generalizations of those known for the finite-dimensional case. However, this does not hold for the sufficient conditions as illustrated by a counterexample. Here, to go from finite to infinite dimensions, causes an essential change in the proof-techniques and the results. We present modified sufficient conditions of first-order and of second-order which are based on a strengthening of the usual assumptions on the derivative of the objective function and on the second derivative of the Lagrangian.  相似文献   

14.
A family of parametric linear-quadratic optimal control problems is considered. The problems are subject to state constraints. It is shown that if weak second-order sufficient optimality conditions and standard constraint qualifications are satisfied at the reference point, then, for small perturbations of the parameter, there exists a locally unique stationary point, corresponding to a solution. This point is a Lipschitz continuous function of the parameter.  相似文献   

15.
An optimal control problem with pointwise mixed constraints of the instationary three-dimensional Navier–Stokes–Voigt equations is considered. We derive second-order optimality conditions and show that there is no gap between second-order necessary optimality conditions and second-order sufficient optimality conditions. In addition, the second-order sufficient optimality conditions for the problem where the objective functional does not contain a Tikhonov regularization term are also discussed.  相似文献   

16.
We derive necessary second-order optimality conditions for discontinuous controls in optimal control problems of ordinary differential equations with initial-final state constraints and mixed state-control constraints of equality and inequality type. Under the assumption that the gradients withrespect to the control of active mixed constraints are linearly independent, the necessary conditions follows from a Pontryagin minimum in the problem. Together with sufficient second-order conditions [70], the necessary conditions of the present paper constitute a pair of no-gap conditions.  相似文献   

17.
We develop sufficient conditions for optimality in the generalized problem of Bolza. The basis of our approach is the dual Hamilton–Jacobi inequality leading to a new sufficient criterion for optimality in which we assume the existence of a function satisfying, together with the Hamiltonian, a certain inequality. Consequently, using this criterion, we derive new sufficient conditions for optimality of first and second order for a relative minimum.  相似文献   

18.
In this paper, we present a necessary and sufficient condition for a zero duality gap between a primal optimization problem and its generalized augmented Lagrangian dual problems. The condition is mainly expressed in the form of the lower semicontinuity of a perturbation function at the origin. For a constrained optimization problem, a general equivalence is established for zero duality gap properties defined by a general nonlinear Lagrangian dual problem and a generalized augmented Lagrangian dual problem, respectively. For a constrained optimization problem with both equality and inequality constraints, we prove that first-order and second-order necessary optimality conditions of the augmented Lagrangian problems with a convex quadratic augmenting function converge to that of the original constrained program. For a mathematical program with only equality constraints, we show that the second-order necessary conditions of general augmented Lagrangian problems with a convex augmenting function converge to that of the original constrained program.This research is supported by the Research Grants Council of Hong Kong (PolyU B-Q359.)  相似文献   

19.
We derive second-order sufficient optimality conditions for discontinuous controls in optimal control problems of ordinary differential equations with initial-final state constraints and mixed state-control constraints of equality and inequality type. Under the assumption that the gradients with respect to the control of active mixed constraints are linearly independent, the sufficient conditions imply a bounded strong minimum in the problem.  相似文献   

20.
In this article sufficient optimality conditions are established for optimal control problems with pointwise convex control constraints. Here, the control is a function with values in Rn. The constraint is of the form u(x)∈U(x), where U is a set-valued mapping that is assumed to be measurable with convex and closed images. The second-order condition requires coercivity of the Lagrange function on a suitable subspace, which excludes strongly active constraints, together with first-order necessary conditions. It ensures local optimality of a reference function in an L-neighborhood. The analysis is done for a model problem namely the optimal distributed control of the instationary Navier-Stokes equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号