首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A printed amperometric glucose sensor based on glucose oxidase adsorbed on crystals of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) is described. The sensitivity and the stability of the sensor are affected by the binder and solvent used for the preparation of the GOD.TTF-TCNQ paste. The sensors are continuously used in a flow injection analysis (FIA) system under continuous polarization at 0.15 V (vs Ag/AgCl) at 37°C. The developed sensors exhibit a large response current, an extended linear range and oxygen independence. The sensors can be used for more than 3 months. The GOD.TTF-TCNQ paste is suitable for the preparation of planar sensor by screen printing method.  相似文献   

2.
制备了一种基于螺旋线形跨尺度结构的酶传感器, 并对该传感器进行了表征和性能测试. 将ϕ 30 μm键合Au丝以螺旋线方式手工缠绕在ϕ 125 μm光纤纤芯上, 在该Au螺旋线上用水浴法合成ZnO纳米线, 得到螺旋线形跨尺度结构; 在ZnO纳米线上物理吸附葡萄糖氧化酶(GOD), 制备了葡萄糖传感器工作电极. 利用扫描电子显微镜(SEM)图像和MatLab图像处理算子分别对螺旋线形跨尺度结构表面形貌及其上活力为50 units/mg的GOD吸附效果进行了定性和定量表征, 分析了非高斯粗糙表面与GOD吸附效果的影响关系. 基于三电极体系采用循环伏安法和计时安培法测试了制备的12个工作电极的性能, 测得该类传感器的灵敏度为(1.410±0.665) μA·L/(mmol·cm2), 线性范围为0~(4.292±0.652) mmol/L, Michaelis-Menten常数为(3.571±1.280) mmol/L, 检出限为(14.085±8.393) μmol/L. 使用活力更高的GOD可以得到性能更好的螺旋线形跨尺度葡萄糖传感器. 该类传感器可广泛应用于医药、 生物、 食品加工及环境监测领域中尿酸、 尿素、 胆固醇、 过氧化氢和苯酚等的检测.  相似文献   

3.
The modification of carbon-paste electrodes by incorporation of the enzyme glucose oxidase (GOD) is described. The resulting probes can be operated as amperometric glucose sensors in the presence or absence of a mediator (1,1'-dimethylferrocene) mixed into the paste. Extended linear calibration ranges have been obtained up to 90 and 5OmM glucose respectively. The electrode responses were rapid, reaching steady-state values within 30-40 sec. Advantages of using a GOD-paste formulation are suggested. Plasma glucose assays were correlated with spectrophotometric determinations based on glucose oxidase (y = 1.07x - 0.16, r = 0.973, n = 17).  相似文献   

4.
A feasible method to fabricate glucose biosensor was developed by covalent attachment of glucose oxidase (GOx) to a gold nanoparticle monolayer modified Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of ferrocyanide followed and confirmed the assemble process of biosensor, and indicated that the gold nanoparticles in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. CV performed in the presence of excess glucose and artificial redox mediator, ferrocenemethanol, allowed to quantify the surface concentration of electrically wired enzyme (Gamma(E)(0)) on the basis of kinetic models reported in literature. The Gamma(E)(0) on proposed electrode was high to 4.1 x 10(-12) mol.cm(-2), which was more than four times of that on electrode direct immobilization of enzyme by cystamine without intermediate layer of gold nanoparticles and 2.4 times of a saturated monolayer of GOx on electrode surface. The analytical performance of this biosensor was investigated by amperometry. The sensor provided a linear response to glucose over the concentration range of 2.0 x 10(-5)-5.7 x 10(-3) M with a sensitivity of 8.8 microA.mM(-1).cm(-2) and a detection limit of 8.2 microM. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 4.3 mM. In addition, the sensor has good reproducibility, and can remain stable over 30 days.  相似文献   

5.
Poly(ethylene glycol)-modified glucose oxidase was immobilized in a poly(vinyl alcohol) cryogel membrane, obtained by a freezing-thawing cyclic process, to obtain a suitable amperometric glucose sensor. The covalent linkage between PEG and GOD molecule improved the physical immobilization of enzyme in the polymeric matrix, by decreasing its loss in time. Sensor behaviour was evaluated electrochemically with a hydrogen peroxide electrode. The glucose content in standard solutions was determined and linear calibration curves in the 5x10(-5)-5x10(-3) mol l(-1) range were obtained. The kinetic parameters in the immobilized system were evaluated and analytical characteristics of sensor, including stability and influence of pH and temperature, were determined.  相似文献   

6.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

7.
Diffusion coefficient measurements in microfluidic devices   总被引:2,自引:0,他引:2  
A glassy carbon electrode (GCE) modified with Pd/IrO(2) provides excellent electrocatalytic oxidation of hydrogen peroxide. Glucose oxidase (GOD) and xanthine oxidase (XOD) were co-immobilized on the modified electrode with a thin film Nafion coated on the enzyme layer to form a glucose (Glu)/hypoxanthine (Hx) sensor, without interference from electroactive species such as ascorbic acid (AA) and uric acid (UA). Its response was evaluated with respect to the enzyme amount on the electrode, pH and temperature of the electrolyte. The prepared bienzymic biosensor, used as the detector of HPLC gave a detection limit of 1.0x10(-6) mol l(-1) Glu and 2.0x10(-7) mol l(-1) Hx (Hx) with a linear concentration range of 5.0x10(-6)-2.5x10(-3) mol l(-1) and 1.0x10(-6)-5.0x10(-4) mol l(-1), respectively. Coupled with microdialysis, it was used to monitor the concentrations of Glu and Hx in rat brain.  相似文献   

8.
纳米增强型毛细管酶柱用于葡萄糖液滴生物传感器的研究   总被引:6,自引:0,他引:6  
葡萄糖的检测在临床医学以及食品工业等领域中十分重要.以往的检测方法主要包括化学发光法[1]、吸光光度法[2]、电化学法[3]和荧光法[4]等.固定化酶柱的制作是发展葡萄糖传感器的关键技术之一.传统的固定化方法主要是将具有生物活性的酶通过物理吸附、共价键合和交联的方法固定于载体基质上或包埋于有机聚合物的基质中.近期研究[5,6]表明,采用溶胶凝胶(Sol-gel)法将蛋白质和酶等生物活性物质包埋于无机陶瓷或玻璃材料内,保持生物组分的活性,且SiO2作为基质材料具有较好的坚固性、抗磨性、化学惰性以及高的光稳定性和透过性,但目前该法多用于电化学型生物传感器[7,8].本文利用纳米颗粒的比表面积大和吸附能力强等特点,将酶吸附在SiO2纳米颗粒表面,用易成膜的聚乙烯醇缩丁醛(PVB)作辅助基质在毛细管上固定酶,并采用分立式酶柱,克服了以往混合型酶柱普遍存在的酶促效率不高和使用寿命较短的局限性.所制得的酶柱具有表面反应活性高、表面活性中心多和催化效率高等特点.结合自行设计的液滴光化学传感装置[9,10],建立了一种高效、快速、微量的葡萄糖实时检测方法.  相似文献   

9.
The influence of the spatial distribution of the two enzymes in an amplified enzyme electrode is investigated by the step-wise fabrication of the enzyme interface. The two enzymes, glucose oxidase (GOD) and glucose dehydrogenase (GDH), are co-immobilised onto the surface of a gold electrode modified with the alkanethiol, 3-mercaptopropionic acid. Three geometries were fabricated: (1) a monolayer enzyme electrode where both enzymes were covalently attached to the alkanethiol layer, (2) a bilayer electrode where the inner layer was GOD and the outer layer was GDH, and (3) a bilayer sensor where the inner layer was GDH and the outer layer was GOD. The response of the three geometries was shown to vary with regard to linear range, sensitivity and hence gain. We believe this is the first demonstration of the spatial relationship between enzymes in a multi-enzyme system influencing the response of the resultant enzyme electrode.  相似文献   

10.
Hydrogel biosensors usually suffer from a slow response, which severely hinders their practical applications. Here a new optical glucose biosensor was designed, using glucose-sensitive hydrogel films as both glucose-sensing material and Fabry-Perot cavity. The film was fabricated by layer-by-layer assembly from partially oxidized dextran (PO-Dex), chitosan, and glucose oxidase (GOD). The film responds to glucose because the incorporated GOD converts glucose to gluconic acid, and thus lowers the local pH in the film, and, in turn, triggers the pH-sensitive film to swell. The glucose-induced swelling causes a shift of Fabry?Perot fringes on the reflection spectra of the film, from which the glucose concentration can be reported. The new sensor works well under physiological conditions. Potential interferents, such as diols for phenylboronic acid-based sensors and electroactive compounds for electrochemical sensors, do not influence the new sensor. The sensor can respond reversibly over a wide range of glucose concentration. Particularly, it responds linearly within the clinically relevant glucose range (0–20 mM). More importantly, because the film is very thin, the new sensor can respond quickly, making it potential for real-time, continuous glucose monitoring.  相似文献   

11.
Calixarenes and their derivatives may be a promising material for enzyme immobilization owing to their particular configuration, unique molecule recognition function and aggregation properties. In this paper, p-tert-butylthiacalix[4]arene tetra-amine (TC4TA) was first used as enzyme immobilization material. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) to develop glucose amperometric biosensor. GOD was strongly adsorbed on the TC4TA modified electrode to form TC4TA/GOD composite membrane. The adsorption mechanism was driven from the covalent bond between amino-group of TC4TA and carboxyl group of GOD and molecule recognition function of TC4TA. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) to oxidize the hydrogen peroxide generated by the enzymatic reaction. The sensor (TC4TA/GOD) showed a relative fast response (response time was about 5 s), low detection limit (20 μM, S/N = 3), and high sensitivity (ca. 10.2 mA M−1 cm−2) with a linear range of 0.08–10 mM of glucose, as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

12.
Sulfhydryl groups of glucose oxidase (GOD) were reacted with maleimide groups of polymaleimidostyrene (PMS) which was coated onto the porous carbon sheet, and the carbon sheet immobilized by GOD was combined with an oxygen electrode to fabricate a glucose sensor. The activity of thiolated GOD immobilized to PMS is much larger than that of native GOD immobilized to PMS. The good linear relationship of glucose and oxygen current response was obtained in a concentration range from 0.1 to 2 mM and upper limit of linear range was found to be 3.0 mM. The immobilized GOD activity is highly dependent on pH at immobilization and the maximum activity was obtained at pH 5.5, probably because the SH groups of GOD that are indispensable for generation of enzyme activity is not exposed at this pH. It was found that PMS is very effective reagent to immobilize enzyme strongly via covalent bond, because high density of maleimide groups of PMS can catch not only exposed SH groups but also buried SH groups.  相似文献   

13.
A novel type of glucose sensor was fabricated based on a glucose oxidase (GOD)-N,N-dimethtylformamide (DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous (3DOM) gold film electrode. The immobilized GOD exhibits a pair of well-defined reversible peaks in 50 mM pH 7.0 phosphate buffer solutions (PBS), which could be attributed to the redox of flavin adenine dinucleotide (FAD) in GOD. The research results show that ionic liquid ([BMIm][BF4]), DMF and 3DOM gold film are crucial for GOD to exhibit a pair of stable and reversible peaks. It is believed that the large active area of 3DOM gold film can increase the amount of immobilized GOD. Simultaneously, the application of IL enhances the stability of GOD and facilitates the electron transfer between GOD and the electrode. The synergetic effect of DMF can help the GOD to maintain its bioactivity better. GOD immobilized on the electrode exhibits the favorable electrocatalytic property to glucose, and the prepared sensor has a linear range from 10 to 125 nM with a detection limit of 3.3 nM at a signal-to-noise ratio of 3σ. The apparent K m (Michaelis- Menten constant) for the enzymatic reaction is 0.018 mM.  相似文献   

14.
《Sensors and Actuators》1989,16(3):235-245
A reliable method of physically immobilizing enzymes in cellulose triacetate (TAC) membranes was developed. The method has several advantages compared with analogous ones currently employed; it was possible to prepare enzyme sensors based on immobilized glucose oxidase (GOD) for determination of glucose in standard solutions and control sera, and based on GOD and invertase for determination of sucrose.  相似文献   

15.
Amperometric enzyme electrode for glucose is described based on the incorporation of glucose oxidase (GOD) into graphite paste modified with tetracyanoquinodimethane (TCNQ). The incorporated enzyme exhibits high activity and long-term stability over the earlier TCNQ-based glucose sensor (1). The sensor provides a linear response to glucose over a wide concentration range. The response time of the sensor is 15-50 sec, and the detection limit is 0.5 mM. Stable response to the substrate was obtained during a period of 35 d. Application of the sensor in the plasma analysis is reported.  相似文献   

16.
Enzylnebasedampcr()metricbiosensorsha\'eattractedincreasinginterestinthe1astt`xodecades.Inordertofabricate[heenzyn1elayer,considerahlceff()rtsha\,eheendcv()tcdt(1thedeveloprnent()fvari()ustechniquesf()rin1n1obilizingthcen/yn1c"2.Rcccntly.thcp()lyelectrolyte-proteincomplcx111ultilayerassen1blybyaIternateelectr()staticadsorptionhasbcenrep()rted',amullilaycrc()nsistingofalterl1atepolyethylenimineandglucoseoxidasclaycrswasassemb1edhyLv()veltl/>.ThesebioIllo1eculararthitecturesopenawaytoconstruct…  相似文献   

17.
A novel film of chitosan-gold nanoparticles is fabricated by a direct and facile electrochemical deposition method and its application in glucose biosensor is investigated. HAuCl(4) solution is mixed with chitosan and electrochemically reduced to gold nanoparticles, which can be stabilized by chitosan and electrodeposited onto glassy carbon electrode surfaces along with the electrodeposition of chitosan. Then a model enzyme, glucose oxidase (GOD) is immobilized onto the resulting film to construct a glucose biosensor through self-assembly. The resulting modified electrode surfaces are characterized with both AFM and cyclic voltammetry. Effects of chitosan and HAuCl(4) concentration in the mixture together with the deposition time and the applied voltage on the amperometric response of the biosensor are also investigated. The linear range of the glucose biosensor is from 5.0 x 10(-5) approximately 1.30 x 10(-3) M with a Michaelis-Menten constant of 3.5 mM and a detection limit of about 13 microM.  相似文献   

18.
《Analytical letters》2012,45(7):1347-1360
Abstract

S-layer ultrafiltration membranes (SUMs) with an active filtration layer composed of coherent two-dimensional, isoporous protein crystals (S-layers) have been used as matrix for immobilizing monolayers of enzymes. Since S-layers are formed by periodic repetition of identical protein subunits, functional groups are present on the crystalline array in an identical position and orientation. As a consequence monolayers of enzymes can bind in a geometrically well defined way. For the covalent immobilization of enzymes carboxyl groups from the S-layer protein were activated with carbodiimide and allowed to react with amino groups of the enzyme. SUMs were employed as a new type of immobilization matrix for the developement of an amperometric glucose sensor using glucose oxidase (GOD) as the biologically active component. Glucose oxidase covalently bound to the surface of the S-layer protein retained approximately 40% of its activity. The enzyme loaded SUMs were covered with a layer of gold or platinum to function as working electrodes. These sensors yielded high signals (150nA/mm2/mmol glucose), fast response times (10–30s) and a linearity range up to 12 mM glucose. The stability under working conditions was more than 48 hours. There was no loss in activity after a storage period of 6 month.  相似文献   

19.
The behavior of resazurin (1) as an electron acceptor in glucose oxidase (GOD)-catalyzed oxidation of glucose under anaerobic conditions is described. When a mixture of 1, glucose, and GOD in phosphate buffer (pH 7.4, 0.1 M) was incubated at 25 degrees C, the resulting solution turned purple to fluorescent pink due to the deoxygenated product, resorufin (2). On incubation of 1 with GOD alone or with H2O2 under essentially the same conditions, no color change was seen, indicating that generation of 2 in the enzymatic reaction is brought about through reduction of 1 by the reduced form (GODred) of GOD, which was also supported by the voltammetric behavior of 1. However, it was found that the enzymatic transformation of 1 to 2 is of no practical use as an indicator reaction for glucose determination using only GOD due to a slow reaction of 1 with GODred. Based on a ping-pong type mechanism with a steady-state approximation, KM and kcat for 1 as an electron acceptor from GODred were estimated to be 15+/-1.3 microM and (5.0+/-0.5) x 10(-2) s(-1), respectively.  相似文献   

20.
将1-丁基-3-甲基咪唑四氟硼酸盐([BMIm][BF4])、N,N-二甲基甲酰胺(DMF)与葡萄糖氧化酶(GOD)的混合物修饰于三维有序大孔(3DOM)金膜电极上,构建了一种新型的葡萄糖传感器.固定的GOD在pH7.0的磷酸缓冲液(PBS)中展现出一对可逆性好的氧化还原峰,这归因于GOD的活性中心黄素腺嘌呤二核苷酸(FAD)的直接电化学行为.研究表明,离子液体(IL)、DMF以及3DOM金膜对GOD的直接电化学都起到了重要的作用.3DOM金膜修饰电极作为基底提高了酶的负载量,加速了GOD与电极表面的电子传递;IL的应用增加了固定GOD的电化学活性;DMF与IL、GOD的协同作用更好地保持了GOD的生物活性.固定在电极表面的GOD对葡萄糖显示出良好的催化性能,其检测线性范围为10~125nmol/L,检测限为3.3nmol/L(S/N=3),酶催化反应的表观米氏常数Km为0.018mmol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号