首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel and robust method for determination of uranium isotopes in various environmental materials is presented. The method is based on total decomposition of the solid materials by the use of closed vessels microwave acid digestion systems and pre concentration of uranium from the liquid samples. The separation of uranium from interfering radionuclides and stable matrix elements is attained by liquid–liquid extraction with triisooctylamine/xylene in sulfuric and consecutively in hydrochloric acid media. Purified uranium is electrodeposited on a stainless steel disks and then measured by alpha spectrometry. The critical steps in the method were examined. The analytical method has been successfully applied to the determination of uranium isotopes in mineral and tap waters, as well as in soils from Northwestern Bulgaria. The analytical quality was checked by analyzing reference materials with different matrices.  相似文献   

2.
A simple and rapid laser fluorometric determination of trace and ultra trace level of uranium in a wide variety of low uranium content materials like soil, basic and ultra basic rocks, plant ash, coal fly ash and red mud samples is described. Interference studies of some common major, minor and trace elements likely to be present in different, geological materials on uranium fluorescence are studied using different fluorescence enhancing reagents like sodium pyrophosphate, orthophosphoric acid, penta sodium tri-polyphosphate and sodium hexametaphosphate. The accurate determination of very low uranium content samples which are rich in iron, manganese and calcium, is possible only after the selective separation of uranium. Conditions suitable for the quantitative single step extraction of 25 ng to 20 μg uranium with tri-n-octylphosphine oxide and single step quantitative stripping with dilute neutral sodium pyrophosphate, which also acts as fluorescence enhancing reagent is studied. The aqueous strip is used for the direct laser fluorometric measurement without any further pretreatment. The procedure is applied for the determination of uranium in soil, basalt, plant ash, coal fly ash and red mud samples. The accuracy of the proposed method is checked by analyzing certain standard reference materials as well as synthetic sample with known quantity of uranium. The accuracy and reproducibility of the method are fairly good with RSD ranging from 3 to 5% depend upon the concentration of uranium.  相似文献   

3.
Khosla MM  Rao SP 《Talanta》1972,19(1):67-71
A selective analytical extraction method for rapid successive complexometric determination of thorium(IV) and uranium(VI) in sulphuric acid media is described. The method is based on the extraction of thorium and uranium from sulphuric acid media with N-butylaniline or N-benzylaniline in chloroform. Both thorium and uranium are selectively and quantitatively extracted in the presence of ascorbic acid and EDTA. Most cations and anions do not interfere. The reduction of uranium(VI) with sodium dithionite at room temperature is rapid and quantitative and superior to that with ascorbic acid, which reduces uranium(VI) in boiling solution. The method is simple, rapid and accurate, and the experimental conditions are not highly critical.  相似文献   

4.
在盐酸和硫酸介质中,研究了汞阴极电解还原和液态Zn-Hg齐还原制备U(Ⅲ)的实验方法,比较了不同介质、酸度、铀浓度和电解时间对U(Ⅲ)还原率的影响,获得了用电解法定量还原制备U(Ⅲ)的最佳条件。经对U(Ⅲ)在空气和氮气中稳定性的测定,得出U(Ⅲ)在空气中的氧化速率呈一级反应。  相似文献   

5.
A method was developed for the determination of trace and subtrace amounts of uranium in organic substances used during the industrial process of nuclear fuel production. The method is based on decomposing 50 g of the sample by wet ashing with 25 g conc. sulfuric acid. The residue from the ashing process was ignited at 525 °C to remove all carbonaceous materials. The residue was boiled with 10 ml of 11 nitric acid. The resulting solutions was analyzed for uranium concentration using a modification of the arsenazo III method which allows for uranium determination after separating it by TBP extraction from all the interfering elements. The proposed method proved to be sensitive (detection limit: 15 ppb). The relative standard deviation of the method for a sample containing 200 ppb uranium is 5%. The dynamic range of the method is wide, since the method is applicable. for trace and subtrace levels of uranium in organic substances.  相似文献   

6.
A rapid method for the determination of uranium at nanogram levels in geological and biological materials is described. The method is based on the separation of 23.5 min239U, produced on neutron activation, by solvent extraction with TBP from nitric acid medium in the presence of HF, which prevents interference from Th; a number of other possibly interfering elements were shown to be negligibly extracted. The method is selective and sensitive enough for the determination of nanogram levels of uranium in soils, ores and biological samples. Results for some standard reference materials were in good agreement with certified values. Presented at the International Conference on Analytical Chemistry, Interan '76, Prague, August 1976.  相似文献   

7.
A critical evaluation of the determination of uranium by inductively coupled plasma optical emission spectrometry was performed using factorial designs (23) involving the factors: acid concentration, radio frequency power and nebulizer gas flow rate. All of the experiments in this study were made for five emission lines, in the presence of nitric and hydrochloric acid. The results demonstrated that, between nitric and hydrochloric acid, the determinations in the presence of nitric acid were most sensitive. The factorial design showed that the nebulizer gas flow rate was the most significant among the factors studied for the five emission lines. Calcium in concentrations of 10 mg L−1 was observed to cause suppression of the emission intensity for some lines. Iron (at least up to 10 mg L−1) did not interfere in the emission intensity of uranium across the five lines studied. Another experiment evaluated simultaneously the effect of 13 other elements, and the results demonstrated that these elements did not affect the emission intensity of uranium for the lines chosen. The optimized method, using the line at 385.957 nm, allows the determination of uranium with limit of quantification of 31 μg L−1 and precision expressed as RSD lower than 2.2% for uranium concentrations of either 500 or 1000 μg L−1. The accuracy was confirmed by analysis of two laboratory reference materials. The developed method was applied to the determination of uranium in an industrial effluent collected from uranium-producing mine in Caetite City, Brazil. The sample was analyzed by inductively coupled plasma mass spectrometry ICP-MS, and the observed recovery was satisfactory.  相似文献   

8.
A new and economical method for assay of environmental samples for uranium isotopes is proposed. Separation and radiochemical purification of uranium isotopes (234U,235U and238U) from other elements is achieved on a single anion exchange column by washing with various concentrations of hydrochloric acid. Iron, the principal interfering element is removed from the colum by washing with 4.5M hydrochloric acid with a combination of reducing agents under the conditions described. Weightless samples of uranium are prepared by either evaporation in a polished stainless steel dish or electroplated on a stainless steel planchet. This method is applicable for air particulates, soils, sediments, coal, water, vegetation, and biologicals. Text of the paper presented in the symposium on Practical Applications of Nuclear and Radiochemistry, at Las Vegas, Nevada, August 25–29, 1980. Submitted for publication in Advances in Chemistry Series.  相似文献   

9.
The purpose of the present paper is to suggest a method for determining the235U abundance in uranium samples (compounds, metallic alloys or other uranium materials, where this element may be natural or not) through a particular application of neutron activation analysis, based on the fission interference by molybdenum. The method lies on an a priori calibration with natural uranium, thus it does not require235U certified standards.  相似文献   

10.
Summary A radiochemical neutron activation analysis (RNAA) for simultaneous determination of uranium and vanadium in a single sample at trace levels is described. The method is based on post-irradiation wet-ashing and solvent extraction of vanadium with N-benzoyl-N-phenyl-hydroxylamine reagent. From the remaining aqueous phase, uranium is extracted into a toluene solution of tri-n-butyl phosphate. The chemical yields are determined spectrophotometrically for vanadium and by gamma-counting of the added natural uranium carrier for uranium. The method was evaluated by the analysis of reference materials and the results showed a good agreement with the certified values. The method was applied to the determination of vanadium and uranium in five military total diet samples in Slovenia.  相似文献   

11.
Hitchen A  Zechanowitsch G 《Talanta》1980,27(5):383-389
The modification and extension of the U.S.A.E.C. ferrous ion-phosphoric acid reduction method for the determination of uranium in high-grade or relatively pure material to a method for the determination of uranium with a high accuracy and precision, in ores containing 0.004-7% U is described. It is simple, rapid and requires no prior separations from elements that, in other methods, frequently interfere. For sample materials having very high concentrations of interfering elements, a prior concentration step using extraction with tri-n-octylphosphine oxide is described, but it is shown that, for most low-grade ores, this step is unnecessary.  相似文献   

12.
A spectrophotometric method has been developed for the determination of uranium(VI) using ascorbic acid. Uranium in the hexavalent state forms a reddish-brown coloured complex with ascorbic acid. The colour intensity of the complex is maximum at pH 4.2-4.5 and is stable for 24 hr. The absorbances of uranium(VI)-ascorbic acid complex at 360 and 450 nm are used for its quantification. Uranium in the range 8-200 microg/ml has been determined with good precision. The method allows the determination of uranium in the presence of many metal ions present as impurities. The described method is simple, accurate and applicable to uranium concentration relevant to the PUREX process and thus can be used for analytical control purposes.  相似文献   

13.
Traces of cadmium in uranium and its compounds can be determined by ion-exchange separation and square-wave polarography. With a small column of anion-exchange resin, cadmium can be separated from uranium and recovered quantitatively from hydrochloric acid solution, Separations of cadmium from uranium are not perfect but are sufficient for the determination of traces of cadmium by square-wave polarography. The lower limit of the method is 0.01 p.p.m. of cadmium.  相似文献   

14.
A method is described for titrimetric determination of iron, uranium or plutonium in nitric acid media. The element is reduced with titanium(III) solution in presence of sulfamic acid, and titrated with cerium(IV) solution. Precautions normally taken for nitric acid media are unnecessary. The method is rapid and precise and is readily applicable to determinations of plutonium or irradiated uranium.  相似文献   

15.
Korkisch J  Krivanec H 《Talanta》1976,23(4):295-300
A method is described for the determination of uranium and thorium in samples of natural waters. After acidification with citric acid the water sample is filtered and sodium citrate and ascorbic acid are added. The resulting solution of pH 3 is passed through a 4-g column of Dowex 1 x 8 (citrate form) on which both uranium and thorium are adsorbed as anionic citrate complexes. Thorium is eluted with 8M hydrochloric acid and separated from co-eluted substances by anion-exchange in 8M nitric acid medium on a separate 2-g column of the same resin in the nitrate form. After complete removal of iron by washing with a mixture consisting of IBMK, acetone and 1M hydrochloric acid (1:8:1 v v ) and treatment of the resin with 6M hydrochloric acid, the uranium is eluted from the 4-g column with 1M hydrochloric acid. In the eluate thorium is determined spectrophotometrically (arsenazo III method) while fluorimetry is employed for the assay of uranium. The procedure was used for the determination of uranium and thorium in numerous water samples collected in Austria, including samples of mineral-waters. The results indicate that a simple relationship exists between the uranium and thorium contents of waters which makes it possible to calculate the approximate thorium content of a sample on the basis of its uranium concentration and vice versa.  相似文献   

16.
The isotope dilution mass spectrometry method of analysis is used to determine the elemental uranium contents in a wide variety of uranium bearing materials. The method is based on the mass spectrometric analysis of a mixture prepared by diluting the sample to be analyzed with a spike of distinctly different isotopic composition to that of the sample. In this work, a beginning is made to identify suitable candidates among the multitude of certified reference materials (CRMs) available at the New Brunswick Laboratory to supplant the use of 233U which remains now as the preferred spike nuclide. The results of the study presented here identify CRM 112-A (of normal isotopic composition) and CRM 115 (depleted uranium composition) as suitable candidates to replace 233U as spike material for determining uranium in high enriched uranium materials, and CRM 116 (235U mass fraction of >90 %) for determining uranium in materials of low enrichment.  相似文献   

17.
Acid leaching of uranium deposits is not a selective process. Sulfuric acid solubilizes iron(III) and half or more of the thorium depending on the mineralog of this element. In uranium recovery by solvent extraction process, uranium is separated from iron by an organic phase consisting of 10 vol% tributylphosphate(TBP) in kerosine diluent. Provided that the aqueous phase is saturated with ammonium nitrate or made 4–5 M in nitric acid prior to extraction. Nitric acid or ammonium nitrate is added to the leach solution in order to obtain a uranyl nitrate product. Leach solutions containing thorium(IV) besides iron are treated in an analogous fashion. Uranium can be extracted away from thorium using 10 vol% TBP in kerosine diluent. The aqueous phase should be saturated with ammonium nitrate and the pH of the solution lowered to 0.5 with sufficient amount of sulfuric acid. In other words, the separation of uranium and thorium depends on the way the relative distributions of the two materials between aqueous solutions and TBP vary with sulfuric acid concentration. Thorium is later recovered from the waste leach liquor, after removal of sulfate ions. Uranium can be stripped from the organic phase by distilled water, and precipitated as ammonium diuranate.  相似文献   

18.
The paper describes the results and observations on the analyses of uranium in calcium fluoride slag, silica cake and fused salt cake obtained in uranium metal and fuel plants. The analysis is done by (1) non-destructive assay by passive gamma ray counting, (2) chemical analysis, and (3) solid state nuclear track detector (SSNTD) technique. The details of the development of NDA method to suit the requirements of the sample are given. The difficulties encountered in chemical assay are described. SSNTD method has been applied to such materials for the estimation of the uranium for the first time. A simple scheme for the recovery of uranium and the salt mixture from the fused salt cake is also described.  相似文献   

19.
A volumetric method is proposed for the rapid determination of small amounts of uranium. The hexavalent uranium is reduced to the quadrivalent state by chromous chloride, the excess of which is destroyed by air oxidation. A low potential redox indicator is used to follow the reduction and air oxidation. Ferric sulphate is added to the solution and the resulting ferrous ion titrated with dichromate solution.  相似文献   

20.
A method for the determination of free acid in the presence of uranium(VI) is suggested. It involves the extraction of uranium by TBP from a solution saturated with potassium nitrate or chioride in order to prevent interference from the hydrolysis of uranium. The end-point is detected potentiometrically at pH 3.4. The method is suitable for the determination of 0.1–1.5 millimoles of acid in the presence of as much as 1.0 millimole of uranium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号