首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple methodology has been developed for the solid phase extraction of lead based on the adsorption of its diphenylthiocarbazone complex on an Amberlite XAD-1180 column. The effect of various parameters such as eluting agents, stability of the column, sample volume, interfering ions, etc. were studied in detail. The adsorbed complex could be eluted using acetone and the concentration of lead was determined using visible spectrophotometry at a wavelength maximum of 486nm. A detection limit of 3.5microgL(-1) could be achieved and the validity of the proposed method was checked in spiked tap water, well water and industrial wastewater samples. The relative standard deviation of the method was found to be 3.0%. The highest preconcentration factor attainable for quantitative recovery (>95%) of lead was 25 for a 250mL sample volume.  相似文献   

2.
A preconcentration procedure, using a short column loaded with Amberlite XAD-7, is proposed for the spectrophotometric determination of traces of tungsten. The procedure is based on the retention of tungsten on the resin after its reduction to a W(V)-thiocyanate complex with tin(II) chloride solution. Interference effects have been shown to be neglible for foreign ions including Ca2+, Mg2+, Na+, SO4 2–, F, NO3 , Cu2+, Fe3+ and Mo6+. The procedure has been applied to hot spring water with satisfactory results (Recovery > 95%; relative standard deviation < 5%; relative error < 3%).  相似文献   

3.
The formed cobalt-a-benzilmonoxime complex was adsorbed onto microcrystalline naphthalene. Then it was determined by zero and first derivative spectrophotometry and by atomic absorption spectrophotometry (AAS) after dissolving into chloroform and methylisobutylketone (MIBK), respectively. Under optimum conditions, cobalt in the range of 1.0 - 20.0, 0.4 - 30.0 and 2.5 - 50.0 microg could be determined by spectrophotometry, first derivative spectrophotometry and AAS method, respectively. By the method, a preconcentration factor equal to approximately 30 for cobalt was obtained. The effect of diverse ions on the determination of 5.0 microg cobalt was also studied. The method was successfully applied to some pharmaceuticals and synthetic alloy samples.  相似文献   

4.
Narin I  Tuzen M  Soylak M 《Talanta》2004,63(2):411-418
A chelating resin, pyrocatechol violet (PV) immobilised on an Amberlite XAD-1180 support, was prepared and its use for the atomic absorption spectrometric determination of aluminium was investigated. The XAD-1180-PV resin was characterised by infrared spectrometry and thermal gravimetric analysis. The optimum pH value for quantitative sorption is 8-9, and desorption can be achieved by using 5.0-10.0 ml of 2 M HCl. The effects of diverse ions on the sorption and recovery of aluminium have been studied. The capacity of sorbent was 6.45±0.59 mg g−1 Al XAD-1180-PV. Recoveries for aluminium from water samples were in the range 95-105%. The accuracy of procedure was confirmed by aluminium determination in certified reference materials. The method developed was applied with varying results to the analysis of natural water, haemodialysis fluids and microwave digested red wine samples from Tokat City.  相似文献   

5.
Tunçeli A  Türker AR 《Talanta》2000,51(5):889-894
A method of silver preconcentration by using a column containing Amberlite XAD-16 resin and this future determination by a flame AAS after elution is proposed. The effect of the factors such as pH, the nature of complexing agent, sample volume, flow rate, the type and concentration of elution solution on the preconcentration efficiency have been investigated. The influence of some matrix elements on the recovery of silver were also examined. It was found, that the quantitative recovery of thiocyanate complex of silver was obtained from nitric acid solution (pH 2) as 99.20+/-0.07% at the 95% confidence level. A preconcentration factor up to 75 could be obtained. The detection limit of silver was 0.047 mg l(-1). The adsorption of silver onto Amberlite XAD-16 can be formally described by a Langmuir equation with maximum adsorption capacity 4.66 mg g(-1) (0.043 mmol g(-1)). The proposed method was applied to determination of silver in standard alloy with relative error 6.25%.  相似文献   

6.
Zaijun L  Yuling Y  Jian T  Jiaomai P 《Talanta》2003,60(1):123-130
A highly sensitive and selective spectrophotometric method for determination of trace lead in water after pre-concentration using mercaptosephadex (MS-50) has been developed, the method based on the color reaction of lead(II) with dibromohydroxylphenylporphyrin. Under optimal condition, lead(II) reacts with the reagent to form a 1:2 yellow complex in presence of TritonX-100, which has a maximum absorption peak at 479 nm. The color reaction can complete rapidly and remain stable for 24 h in room temperature. The molar absorption coefficient of the lead complex, the limit of quantification, the limit of detection and relative standard deviations were found to be 2.35×105 l mol−1 cm−1, 4.3, 1.4 ng ml−1 and 1.0%, respectively. The absorbance of the lead complex at 479 nm is linear up to 0.48 μg ml−1 of lead(II). The effect of various co-existing ions in water were examined seriously. No interference was observed. Moreover, a simple pre-concentration method for trace lead in water was also studied using MS-50. It was found that trace lead in water can be adsorbed in 1.0 mol l−1 HCl and dissociated from MS-50 with 4.0 mol l−1 HCl quantitatively, that improves the selectivity and the sensitivity of method (its detection limit (3 s) changed into 0.2 ng ml−1 of lead) obviously. The proposed method has been applied to determine trace lead in water samples with satisfactory results.  相似文献   

7.
A flow-injection system with on-line separation and preconcentration is described for the spectrophotometric determination of trace uranium in geological samples. Uranium is selctively adsorbed from 0.7 mol l?1 nitric acid on a microcolumn (40 mm long, 4.4 mm i.d.) containing levextrel CL-5209 resin (120–200 mesh) and separated from the sample matrix and most of the co-existing ions; 10-fold concentration is obtained. Eluted uranium is determined spectrophotometrically with arsenazo-III. The detection limit is μg l?1 uranium and calibration is linear up to 0.3 mg l?1 uranium With dual columns operated alternately for adsorption and elution, 30 samples can be analyzed per hour. Masking agents are added to eliminate interferences from thorium and iron. The method is sensitive and highly selective, easy to operate and suitable for routine analysis of geological samples for uranium.  相似文献   

8.
A new micelle-mediated phase preconcentration method for preconcentration of ultra-trace quantities of beryllium as a prior step to its determination by spectrophotometry has been developed. Chrome Azurol S (CAS) and cetyltrimethylammonium bromide (CTAB) were used as chelating agent and cationic surfactant, respectively. The method evaluates and eliminates the blank bias error present in such procedures using mean centering of ratio spectra. This procedure gives more accurate results than the traditional approach using absorbance values against reagent blank. The optimal extraction and reaction conditions were studied and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration and improvement factors) were obtained. Linearity was obeyed in the range of 0.9-18.0 ng mL−1 (1.00 × 10−7-2.00 × 10−6 mol L−1) of beryllium. The detection limit of the method is 0.51 ng mL−1 (5.66 × 10−8 mol L−1) of beryllium. The interference effect of some anions and cations was also tested. The method was applied to the determination of beryllium in spring water samples.  相似文献   

9.
A new column, solid-phase extraction (SPE), preconcentration method was developed for determination of Cd, Co, and Cu ions in natural water samples by flame atomic absorption spectrometry. The procedure is based on the retention of analytes in the form of 2,4-dinitrophenyldiazoaminoazobenzene (DNDAA) complex on a mini column of DNDAA-XAD-2 resin. The effects of pH, eluent type, eluent concentration, eluent volume, resin quantity, sample volume, sample flow rate, and matrix ions (Na, Ca, and Mg) were investigated on the recovery of the metals using model solutions. The detection limit for Cd, Co, and Cu was 0.062, 0.084, and 0.057 μg L−1 and the quantification limit was 0.17, 0.24, and 0.12 μg L−1 respectively. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The developed method was applied to the determination of trace metal ions in tap water, river water samples with satisfactory results.  相似文献   

10.
A cloud point extraction process using mixed micelle of the cationic surfactant CTAB and non-ionic surfactant TritonX-114 to extract uranium(VI) from aqueous solutions was investigated. The method is based on the color reaction of uranium with pyrocatechol violet in the presence of potassium iodide in hexamethylenetetramine buffer media and mixed micelle-mediated extraction of complex. The optimal extraction and reaction conditions (e.g. surfactant concentration, reagent concentration, effect of time) were studied and the analytical characteristics of the method (e.g. limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 0.20-10.00 ng mL−1 of uranium(VI) ion and the detection limit of the method is 0.06 ng mL−1. The interference effect of some anions and cations was also tested. The method was applied to the determination of uranium(VI) in tap water, waste-water and well water samples.  相似文献   

11.
The determination of trace metals, e.g. Bi, Cd, Pb, in high-purity aluminium, zinc and commercial steel by flame or graphite furnace atomic absorption spectrometry following their preconcentrations as iodo complexes on XAD-1180 resin by means of a short column system is described. The recoveries are quantitative (95%). The relative standard deviations varies between 6% and 10%. The relative errors are less than 8% in a concentration range of 1 × 10–3 –4 × 10–5%. Detection limits for flame AAS and GFAAS were in the ranges of 0.002–0.110 g/ml and 0.0003–0.004 g/ml or in the ranges of 0.08–4.40 g/g and 0.012–0.16 g/g with respect to the solid samples, respectively.  相似文献   

12.
Tokalioğlu S  Kartal S  Elçi L 《Annali di chimica》2002,92(11-12):1119-1126
A method was described for the determination of the elements Cr, Mn, Fe, Co, Ni, Cu, Cd, Pb, and Bi in waters by flame atomic absorption spectrometry (FAAS) after separation and preconcentration on Amberlite XAD-16 resin with sodium tetraborate using a chromatographic column. Parameters influencing the analytical performance, including pH and the volume of sample, amount of analyte and interfering effect of co-existing ions, were studied in detail. The recovery values were quantitative (> or = 95%), and the relative standard deviation (RSD) and detection limit (DL) varied in the range of 1.1-2.4% (n=10) and 0.002-0.177 microg m(-1) (3s, n=20), respectively. After being optimized, the proposed method was applied to the drinking water, waste water and artificial sea water samples. Recovery values of the elements investigated, were quantitative for tap water and synthetic sea water, except for Mn, Co and Ni (including also Cd for synthetic sea water). Recovery values of Cd, Pb, Cu and Co were found to be 95, 102, < or = 87, and < or = 83%, respectively, for the waste water samples.  相似文献   

13.
A simple method for the determination of mercury in water samples after preconcentration using dispersive liquid-liquid microextraction is described. The procedure is based on the extraction of mercury in the form of a complex and its subsequent determination by spectrophotometry. The complex is formed between Hg(II) and 2-(2-benzothiazolylazo)-p-cresol. The detection at 650 nm is performed directly in the metal-rich phase, which is spread on a triacetylcellulose membrane. The method eliminates the need to use a cuvet or large quantities of samples and reagents. The parameters that influence the preconcentration were studied, and the analytical characteristics were determined. The enrichment factor and the consumptive index for this method were 64 and 0.16 mL, respectively. The LOD (3.3 microg/L) and LOQ (11.1 microg/L) were also determined. The accuracy of the method was tested by the determination of mercury in certified reference materials BCR 397 (Human Hair) and SRM 2781 (Domestic Sludge). The method was applied to the determination of mercury in samples of drinking water, sea water, and river water.  相似文献   

14.
Park CI  Cha KW 《Talanta》1998,46(6):1515-1523
2-Hydroxybenzaldehyde-5-nitro-pyridylhydrazone (2HB-5NPH) was synthesized and its application in the spectrophotometric determination of metal ions was studied in the presence of surfactants. A separation procedure, using a short column filled with Amberlite IRC 718, is proposed for the spectrophotometric determination of traces of cobalt. The influence of several ions, as interference, was discussed. The procedure was applied to determination of cobalt in mixture sample with satisfactory results (≥recovery 96%; relative error ≤2%; relative standard deviation ≤1.2% in the concentration range of 0.02–2.0 mg l−1; detection limit, 0.01 mg l−1 in solution). Control of the pH during the column operation is essential because the adsorption capacities are very sensitive to change in pH. Their separation was carried out in 0.005 M Malic acid, 1.5 M HCl, 2.0 M HNO3 media.  相似文献   

15.
16.
Sauerer A  Troll G 《Talanta》1984,31(4):249-252
Although photometric determination of beryllium is generally quite satisfactory in trace analysis, application to geochemical samples is restricted because of the numerous interfering ions. Introduction of an extraction procedure eliminates the interference of Al and Fe, which occur in high concentrations in most silicate rocks, and enables beryllium to be determined with Eriochrome Cyanine R. Use of the method for analysis of six international geochemical reference samples containing between 1 and 30 ppm beryllium has given satisfactory results (relative standard deviation from 1.6 to 7.8%).  相似文献   

17.
A sensitive spectrophotometric method for the determination of trace amounts of acetylacetone in aqueous solution is carried out. In the presence of bicarbonate solution, diazotized anthranilic acid reagent reacts rapidly with acetylacetone to form a yellow-colored compound with maximum absorption at 330 nm, which is water-soluble and reasonably stable. Adherence to Beer's law is observed in the range 20–200 μg of acetylacetone/25 ml, with a molar absorptivity of 19.5 × 103 liters mol−1 cm−1, a sensitivity index of 0.0051 μg cm−2, relative to + 0.3 to −0.9%, and a relative standard deviation of 0.5–1.4%, depending on the concentration level.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号