首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hassan SS  Marzouk SA 《Talanta》1994,41(6):891-899
A novel potentiometric approach for both batch and flow injection determination of iron(II) and/or iron(III) is described. It is based on the formation and monitoring of ferroin with a PVC membrane sensor containing ferroin-TPB as an electroactive component plasticized with 2-nitrophenyl phenyl ether. The sensor exhibits fast Nernstian response for ferroin with a cationic calibration slope of 30 +/- 0.2 mV/concentration decade down to 4 x 10(-7)M ferroin (0.03 ppm Fe) at pH 3-9. Interferences from common inorganic cations are negligible or can be eliminated by a pretreatment with DDC. The ferroin sensor was successfully applied to the determination of iron contents in water, alloys, rocks and pharmaceuticals. The results show good correlation with data obtained by the standard spectrophotometric ferroin method, the coefficient of correlation is better than 0.7%.  相似文献   

2.
Hassan SS  Attawiya AM 《Talanta》2006,70(4):883-889
A novel potentiometric uranyl membrane sensor with a divalent anionic response is developed, characterized and used for determination of uranyl ion. The sensor incorporates triethylenetetramine (TETA) as an ionophore in poly(vinyl chloride) matrix membrane (PVC) plasticized with o-nitrophenyloctyl ether (o-NPOE). In strong sulphate test solutions, UO22+ ion forms a highly stable [UO2(SO4)2]2− anion, extractable in TETA as {(2TETAH)2+ [UO2(SO4)2]2−} complex. Formation of the complex is confirmed and characterized by elemental analysis, mass spectrometry and infrared spectrometry. Sensor based on this system displays at pH 2.5-3.8 a linear response over the concentration range of 1.0 × 10−1-3.5 × 10−5 mol l−1 uranium with a near-Nernstian calibration slope of −26.5 ± 0.3 mV decade−1. The lower limit of detection is ∼5 μg ml−1, the lifetime is 12 weeks and negligible interferences are caused by most common cations. Validation of the assay method reveals excellent performance characteristics in terms of sensitivity, selectivity, fast response and potential stability. The sensor is used for the determination of 0.01-7.09 wt% uranium in naturally occurring and certified ore samples. The results show an average recovery of 97.6% and compare fairly well with data obtained using X-ray fluorescence technique.  相似文献   

3.
The construction and performance characteristics of a new potentiometric PVC membrane sensor for the determination of sodium dodecyl sulfate (SDS) are described. The sensor was based on the use of an N-cetyl-N,N,N trimethyl ammonium (CTA) dodecyl sulfate (DS) ion pair as ion exchange sites in PVC matrix in the presence of o-nitrophenyl octylether as plasticiser. The sensor exhibited a fast, stable, and near-Nernstian response for SDS over the concentration range of 1 × 10?3 to 10?6 M at 25°C and the pH range 4–8.5 with anionic slope of 52.5 ± 0.5 mV decade?1. The lower detection limit was 3 × 10?6 M, and the response time was 25 s. Selectivity coefficients of SDS with respect to a number of different species were investigated. There were negligible interferences caused by most of the investigated anions. The determination of 1.0–280.0 µg mL?1 of SDS in aqueous solutions showed an average recovery of 99.1%, and the mean relative standard deviation was 1.4 at 100 µg mL?1. The results obtained in the determination of SDS in liquid soap, water and in some pharmaceutical preparations compared favourably with those obtained by the Methylene Blue active substance method (MBAS). In the present investigation, the DS sensor has been used as an end-point indicator electrode for some precipitation titration reactions, e.g. titration of SDS with CTMABr and cetylpyridinium chloride with SDS.  相似文献   

4.
In this research, new electrodes were prepared by incorporating a new calix[4]arene derivative into a plasticized poly(vinyl chloride) matrix. Calibration plots with Nernstian slopes (29.9 ± 1.1 mV/decade) for vanadyl ion were observed over a linear range of about four decades of concentration (1.0 × 10−5 to 1.0 × 10−1 mol dm−3, at 25 °C). This electrode revealed a lower limit of detection of 3.9 × 10−6 mol dm−3. Conductometric data showed the relatively strong interaction between calix[4]arene and vanadyl ions. The results show that this electrode can be used in acetonitril and methanol media until 10% (v/v) concentration without interference. It has a short response time and can be used for more than two months without any considerable divergence in the potentials. The influence of membrane composition, the pH of the test solution, and the interfering ions on the electrode performance was investigated. The effect of temperature on the electrode response showed that the temperature higher than 50 °C deteriorates the electrode performance. The isothermal temperature coefficient of this electrode amounted to 0.0015 V °C−1. The results of application show that the electrode can be used successfully in present Cr3+ and Fe3+.  相似文献   

5.
A potentiometric sensor based on the Schiff base 2,2′-(1E,1′E)-(1,1′-binaphthyl-2,2′-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol was synthesized and tested as an ionophore PVC-based membrane sensor selective towards silver ions (Ag+). Potentiometric testing demonstrated the high affinity of this receptor to silver ions. Seven membranes were fabricated with different compositions, with best performance shown by that with an ionophore composition (w/w) of 1.0?mg, PVC 33.0?mg, 2-nitrophenyl octyl ether 66?mg, and potassium tetrakis(p-chlorophenyl)borate 50?mol% in 1.0?mL tetrahydrofuran. The sensor worked well over a wide range of concentrations (1.0?×?10?2 to 1.0?×?10?6?M Ag+) at pH?6, showing a slope of 60.99?mV/dec with rapid response times of less than 3?s. The sensor also showed good selectivity towards Ag+ in the presence of interfering cations, with the highest selectivity coefficient observed for Hg2+ (2.7). A low detection limit of 3.4?×?10?7?M Ag+ was established.  相似文献   

6.
Poly(vinyl chloride) (PVC)-based membrane of pentathia-15-crown-5 exhibits good potentiometric response for Hg2+ over a wide concentration range (2.51 × 10−5 to 1.00 × 10−1 mol dm−3) with a slope of 32.1 mV per decade of Hg2+ concentration. The response time of the sensor is as fast as 20 s. The electrode has been used for a period of six weeks and exhibits fairly good discriminating ability towards Hg2+ in comparison to alkali, alkaline and some heavy metal ions. The electrode can be used in the pH range from 2.7 to 5.0.  相似文献   

7.
Solution studies showed a selective interaction between the new synthesized ionophore, 2-[(thiophen-2-yl)methyleneamino]isoindoline-1,3-dione (TMID) and Fe(III) ion. Therefore, TMID was used as an iron selective ion-carrier in a plasticized liquid membrane sensor. The linear response range of the proposed electrode was 1.0 × 10?6–1.0 × 10?2 M. The Nernstian slope of 20.1 ± 0.3 mV/decade, and a detection limit of 5 × 10?7 M was obtained. The sensor could be used in the pH range of 2.3–4.8, and the response time was about 10 s. The lifetime of the electrode was at least 7 weeks. The sensor accuracy was investigated in two ways: (i) with the potentiometric titration of a Fe3+ solution with EDTA and (ii) with Fe(III) monitoring in some cationic mixtures. Finally, the newly fabricated electrode was effectively applied as an indicator electrode for the direct Fe3+ determination in real samples.  相似文献   

8.
A novel cetylpyridinium chloride-selective membrane sensor consisting of cetylpyridinium-ferric thiocyanate ion pairs dispersed in a PVC matrix placticized with dioctylphthalate is described. The electrode shows a stable, near-Nernstian response for 1 x 10(-3)-1 x 10(-6) mol l-1 cetylpyridinium chloride (CPC) at 25 degrees C over the pH range 1-6 with a cationic slope of 57.5 +/- 0.4. The lower detection limit is 8 x 10(-7) mol l-1 and the response time is 30-60 s. Selectivity coefficients for CPC relative to a number of interfering substances were investigated. There is negligible interference from many cations, anions and pharmaceutical excipients; however, cetyltrimethylammonim bromide (CTMAB) interfered significantly. The determination of 0.5-350 micrograms/ml of CPC in aqueous solutions shows an average recovery of 98.5% and a mean relative standard deviation of 1.6% at 56.0 micrograms/ml. The direct determination of CPC in Ezafluor mouthwash gave results that compare favorably with those obtained by the British Pharmacopoeia method. Precipitation titrations involving CPC as titrant are monitored with a CP sensor. The CP electrode has been utilized as an end point indicator electrode for the determination of anionic surfactants in some commercial detergents.  相似文献   

9.
A PVC membrane electrode for zinc ions based on cryptand C2B22 as membrane carrier was prepared. The electrode exhibits a linear stable response over a wide concentration range (5.0 × 10–2– 5.0 × 10–5 mol/L) with a slope of 24 mV/ decade and a limit of detection of 3.98 × 10–5 mol/L (2.6 μg/g). It has a fast response time of about 30 s and can be used for at least 4 months without any divergence in potential. The proposed sensor revealed good selectivities for Zn2+ over a wide variety of other metal ions and could be used in a pH range of 4–7. It was used as an indicator electrode in potentiometric titration of zinc ion. Received: 26 February 1998 / Revised: 25 May 1998 / Accepted: 28 May 1998  相似文献   

10.
A diclofenacselective electrode with a plasticized poly(vinyl chloride) membrane containing an ion associate of diclofenac with Astrafloxin FF as an electrode-active substance was developed. The linearity range of the electrode function varied from 5 × 10?5 to 5 × 10?2 M; the slope of the electrode function was 59.0 ± 1.2 mV/pc, and the working pH range was 9–12. The effectiveness of the use of this electrode for monitoring diclofenac in pharmaceutical preparations was demonstrated.  相似文献   

11.
O'Connor KM  Svehla G  Harris SJ  McKervey MA 《Talanta》1992,39(11):1549-1554
Four lipophilic sulphur and/or nitrogen containing calixarene derivatives have been tested as ionophores in Ag(I)-selective poly (vinyl chloride) membrane electrodes. All gave acceptable linear responses with one giving a response of 50 mV/dec in the Ag(I) ion activity range 10(-4)-10(-1)M and high selectivity towards other transition metals and sodium and potassium ions. This ionophore was also tested as a membrane coated glassy-carbon electrode where the sensitivity and selectivity of the conventional membrane electrode was found to be repeated. The latter electrode was then used in potentiometric titrations of halide ions with silver nitrate.  相似文献   

12.
The construction and performance characteristics of a novel chromate ion-selective membrane sensor are described and used for determining chromium(III) and chromium(VI) ions. The sensor is based on the use of a rhodamine-B chromate ion-associate complex as an electroactive material in a poly(vinyl chloride) membrane plasticized with o-nitrophenyloctyl ether as a solvent mediator. In a phosphate buffer solution of pH 6 - 7, the sensor displays a stable, reproducible and linear potential response over the concentration range of 1 x 10(-1) - 5 x 10(-6) mol l(-1) with an anionic Nernstian slope of 30.8 +/- 0.5 mV decade(-1) and a detection limit of 1 x 10(-6) mol l(-1) Cr(VI). High selectivity for Cr(VI) is offered over many common anions (e.g., I-, Br-, Cl-, IO4-, CN-, acetate, oxalate, citrate, sulfate, phosphate, thiosulfate, selenite, nitrate) and cations (e.g., Ag+, Ca2+, Sr2+, Co2+, Ni2+, Cu2+, Mn2+, Fe2+, Zn2+, Cd2+, Al3+, Cr3+). The sensor is used for determining Cr(VI) and/or Cr(III) ions in separate or mixed solutions after the oxidation of Cr(III) into Cr(VI) with H2O2. As low as 0.2 microg ml(-1) of chromium is determined with a precision of +/-1.2%. The chromium contents of some wastewater samples were accurately assessed, and the results agreed fairly well with data obtained by atomic absorption spectrometry.  相似文献   

13.
A potentiometric device based on interfacing a solid electrolyte oxygen ion conductor with a thin platinum film acts as a robust, reproducible sensor for the detection of hydrocarbons in high- or ultrahigh-vacuum environments. Sensitivities in the order of approximately 5 x 10(-10) mbar are achievable under open circuit conditions, with good selectivity for discrimination between n-butane on one hand and toluene, n-octane, n-hexane, and 1-butene on the other hand. The sensor's sensitivity may be tuned by operating under constant current (closed circuit) conditions; injection of anodic current is also a very effective means of restoring a clean sensing surface at any desired point. XPS data and potentiometric measurements confirm the proposed mode of sensing action: the steady-state coverage of Oa, which sets the potential of the Pt sensing electrode, is determined by the partial pressure and dissociative sticking probability of the impinging hydrocarbon. The principles established here provide the basis for a viable, inherently flexible, and promising means for the sensitive and selective detection of hydrocarbons under demanding conditions.  相似文献   

14.
An ion-selective potentiometric sensor with an ionophore is developed based on the ion associate of artificial food colorant E133 and a cetylpyridinium cation. The main electroanalytical parameters of the sensor are evaluated: linearity range of the response, pH effect, and the effect of temperature on the electrode performance and selectivity. The sensor is used to determine E133 in the Powerade beverage. The accuracy of the determination is confirmed by an extraction–photometric method.  相似文献   

15.
A polymeric membrane based Pb(II) selective potentiometric sensor was developed by using 1,3,7,9-tetraaza-2,8-dithia-4,10-dimethyl-6,12-diphenylcyclododeca-4,6,10,12-tetraene (TDDDCT) as an electroactive material along with anion excluder sodium tetraphenylborate (NaTPB) and plasticizer dioctylphthalate (DOP). The best performance in terms of slope, concentration range and response time was exhibited by the membrane having TDDDCT:PVC:DOP:NaTPB in the ratio 3:32:62:3 (w/w%). Potentiometric results show that the developed sensor works well in the concentration range 5.0 × 10?7–1.0 × 10?1 M with a near Nernstian slope of 29.5 (±0.5) mV decade?1. The detection limit is down to 2.5 × 10?7 M. The working pH range of this sensor is 2.8–7.0 and it works well in partially nonaqueous medium up to 25 % (v/v) methanol and ethanol. It exhibits a fast response time of 10 s. Selectivity coefficient values of various interfering ions were determined by the fixed interference method (FIM). The sensor reveals good selectivity for Pb(II) ions over other metal ions investigated. The developed sensor is used in the determination of lead in ‘Eveready battery waste’ and as an indicator electrode in the potentiometric titration of Pb(II) against EDTA.  相似文献   

16.
A new technique is proposed for detecting interactions between DNA and DNA autoimmune antibodies using a potentiometric sensor based on a glassy-carbon electrode modified with polyaniline and native DNA from chicken erythrocytes. It is shown that the DNA-antibody interaction changes the rate of polyaniline doping in transferring the DNA sensor from an alkaline (pH 7.5) solution, which is optimum for the immunochemical reaction, to an acidic (pH 3.0) solution. The dynamics of the variation of the DNA sensor potential depends on the titer of antibodies and their origin. The dependence of the DNA sensor signal on the dilution of the blood sera from systemic lupus erythematosus and autoimmune thyroiditis patients shows that DNA antibodies can be diagnosed by the characteristic maximum in the dilution curve found in the range of serum dilutions from 1: 20 to 1: 50.  相似文献   

17.
A sensitive method capable of detecting Hydrogen cyanide gas in atmosphere at its TLV is being presented. This method makes use of two silver electrodes kept in two separate compartments which are in contact with a solution of constant concentration of Silver dicyano complex at a pH 11.5. One of the electrodes used as reference is concealed and the other used for sensing is exposed to the incoming air. In the absence of Hydrogen cyanide gas the potential difference between the two electrodes is zero, but when hydrogen cyanide gas is passed into the cell, the activity of Ag(+) ions nearer to the sensing electrode changes, there by generating a potential difference between the two electrodes. The plot between the potential vs. log of Concentration of Hydrogen cyanide gas is linear, in the concentration range 0.66-42.3 mg/m(3) with a slope nearer to 120mV and regression coefficient around 0.997. The standard deviation is 6% (n=4). Minimum detectable limit is 0.66 mg/m(3). Various concentrations of Silver dicyano complex used gave similar plots.  相似文献   

18.
A novel tetrachlorothallate (III) (TCT)-selective membrane sensor consisting of tetrachlorothallate (III)-2,3,5-triphenyl-2-H-tetrazolium ion pair dispersed in a PVC matrix plasticized with dioctylphthalate is described. The electrode shows a stable, near-Nernstian response for 1×10−3-4×10−6 M thallium (III) at 25 °C with an anionic slope of 56.5±0.5 over the pH range 3-6. The lower detection limit and the response time are 2×10−6 M and 30-60 s, respectively. Selectivity coefficients for Tl(III) relative to a number of interfering substances were investigated. There is negligible interference from many cations and anions; however, iodide and bromide are significantly interfere. The determination of 0.5-200 μg ml−1 of Tl(III) in aqueous solutions shows an average recovery of 99.0% and a mean relative standard deviation of 1.4% at 50.0 μg ml−1. The direct determination of Tl(III) in spiked wastewater gave results that compare favorably with those obtained by the atomic absorption spectrometric method. The electrode was successfully applied for the determination of thallium in zinc concentrate. Also the tetrachlorothallate electrode has been utilized as an end point indicator electrode for the determination of thallium using potentiometric titration.  相似文献   

19.
A PVC-based membrane electrode for lead ions based on hexathia-18-crown-6-tetraone as membrane carrier was prepared. The influence of membrane composition, pH of test solution and foreign ions on the electrode performance were investigated. The electrode showed a Nernstian response over a lead concentration range from 1.0 x 10(-6) to 8.0 x 10(-3) M at 25 degrees C, and was found to be very selective, precise and usable within the pH range 3.0-6.0. The electrode was successfully used as an indicator electrode in potentiometric titration of lead ions and in direct determination of lead in water samples.  相似文献   

20.
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. In this work, a biomimetic potentiometric sensor, based on a non-covalent imprinted polymer, was fabricated for the recognition and determination of hydroxyzine in tablets and biological fluids. The molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization, using hydroxyzine dihydrochloride as a template molecule, methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensor showed a high selectivity and a sensitive response to the template in aqueous system. The MIP-modified electrode exhibited a Nernstian response (29.4 ± 1.0 mV decade−1) in a wide concentration range of 1.0 × 10−6 to 1.0 × 10−1 M with a lower detection limit of 7.0 × 10−7 M. The electrode demonstrated a response time of ∼15 s, a high performance and a satisfactory long-term stability (more than 5 months). The method has the requisite accuracy, sensitivity and precision to assay hydroxyzine in tablets and biological fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号