首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Copper(II) forms 1:1 and 1:2 intense red complexes with phenanthraquinone monophenylthiosemicarbazone (PPT) at pH 3-3.5 and > or =6.5, respectively. These complexes exhibit maximal absorbance at 545 and 517 nm, the molar absorptivity being 2.3 x 10(4) and 4.8 x 10(4) l mol(-1) cm(-1), respectively. However, the 1:1 complex was quantitatively floated with oleic acid (HOL) surfactant in the pH range 4.5-5.5, providing a highly selective and sensitive procedure for the spectrophotometric determination of CuII. The molar absorptivity of the floated Cu-PPT complex was 1.5 x 10(5) l mol)(-1) cm(-1). Beer's law was obeyed over the range 3-400 ppb at 545 nm. The analytical parameters affecting the flotation process and hence the determination of copper traces were reported. Also, the structure of the isolated solid complex and the mechanism of flotation were suggested. Moreover, the procedure was successfully applied to the analysis of CuII in natural waters, serum blood and some drug samples.  相似文献   

2.
A kinetic-catalytic spectrophotometric flow-injection method was developed for the rapid and sensitive determination of trace amounts of copper(II). The method is based on the catalytic effect of copper(II) on the redox reaction of cysteine with iron(III). Iron(II) produced by the catalytic reaction reacts with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) to form the iron(II)-TPTZ complex (lambda(max) = 593 nm). By measuring an absorbance of the complex, one could determine 0.05-8 ppb copper(II) with the relative standard deviations (n = 10) of 1.6%, 1.3%, and 0.8% for 0.5 ppb, 1 ppb, and 2 ppb copper(II), respectively. The limit of detection (S/N = 3) was 0.005 ppb. The sample throughput was 30 h(-1). The proposed method was successfully applied to the determination of copper in natural water and serum samples.  相似文献   

3.
Zhike H  Hua G  Liangjie Y  Shaofang L  Hui M  Xiaoyan L  Yun'e Z 《Talanta》1998,47(2):301-304
A chemiluminescence method for the determination of citric acid was developed. The method is based on the enhancement of citric acid on the chemiluminescence light emission of tris-(2,2'-bipyridine)ruthenium(II). In the presence of tris-(2,2'-bipyridine)ruthenium(II), upon the addition of Ce(IV), resulted in intense light emission. The emission intensity is greatly enhanced by the presence of citric acid. The linear range and detection limit of citric acid are 3.0x10(-8) approximately 6.0x10(-6) mol l(-1) and 3.0x10(-8) mol l(-1), respectively. The precision of the proposed method is determined by analyzing 11 samples containing 1.0x10(-7) mol l(-1) citric acid. The relative standard deviation is 3.0%. The enhanced mechanism of citric acid was studied. The method was evaluated by carrying out an interference study with common ions and compounds, by a recovery study and by analysis of human urine and orange juice. A satisfactory result was obtained.  相似文献   

4.
Tieli Z  Huichun Z  Linpei J 《Talanta》1999,49(1):77-82
The sensitized fluorescence intensity of the terbium ion (Tb(3+)) can be notably enhanced after the Tb(3+)-lomefloxacin(LFLX) complex system was irradiated by 365nm ultraviolet light. A photochemical reaction occurs to the irradiated Tb(3+)-LFLX complex. A new Tb(3+)system with intense fluorescence is obtained. On this basis a new sensitive and selective photochemical fluorimetry for the determination of LFLX was established. Under the optimal experimental conditions, the linear range of the determination is 2.0-500x10(-8) mol l(-1) for LFLX, and the detection limit is 6.0x10(-9) mol l(-1).Without any pre-treatment the recoveries of LFLX in human urine and serum were determined.  相似文献   

5.
A simple and sensitive spectrophotometric method for determination of copper(II) is based on the formation of a blue coloured complex of Cu(II) with 9-phenyl-2,3,7-trihydroxy-6-fluorone (PF) in the presence of cetylpyridinium chloride (CP) and Triton X-100, has been developed. Optimum concentrations of PF, CP, Triton X-100 and pH ensuring maximum absorbance were defined. The complex Cu(II)-PF-CP-Triton X-100 shows maximum absorbance at 595 nm with a molar absorptivity value of 9.67x10(4) l mol(-1) cm(-1). The detection limit of the method is 0.028 mug ml(-1). Beer's law is obeyed for copper concentrations in the range 0.04-0.4 mug ml(-1). The studies of the effect of foreign ions on determination of copper, show that the selectivity of the method is poor. The cations of alkali metals and anions Br(-), Cl(-), I(-), F(-), NO(2)(-), NO(3)(-), CH(3)COO(-), SO(4)(2-), S(2)O(3)(2-), PO(4)(3-), citrates (examined in 1000-fold molar excess over copper) do not affect the determination. All cations forming complexes with PF have an interfering effect. The statistical evaluation of the method was carried out for six determinations using 10 mug of Cu and the following results were obtained: the standard deviation, SD=0.042, the confidence interval mu(95)=10.1+/-0.1 mug Cu. The method has been applied for determination of copper in blood serum.  相似文献   

6.
Nana CG  Jian W  Xi C  Pinga DJ  Feng ZZ  Qing CH 《The Analyst》2000,125(12):2294-2298
It has been found that the electrochemical activity of glutathione was increased greatly at the glassy carbon electrodes modified with 5,10,15,20-tetraphenylporphine ruthenium(II) carbenyl (RuTPP), meso-tetraphenylporphine copper(II) complex (CuTTP) and hemin. It has been also found that glutathione would enhance the electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) at a hemin glassy carbon electrode; the enhanced ECL intensity was linear with the concentration of glutathione in the range of 1 x 10(-7)-1 x 10(-4) mol l-1, based on which method for determination of glutathione has been developed. The detection limit of glutathione was 2 x 10(-8) mol l-1, and the relative standard deviation for 1 x 10(-6) mol l-1 glutathione was 2.7%. The mechanism for this ECL system has been proposed.  相似文献   

7.
Thakur M  Deb MK 《Talanta》1999,49(3):561-569
A simple and sensitive field detection and spectrophotometric method for determination of copper described herewith is based on the formation of a red coloured species of copper(II) with 1-[pyridyl-(2)-azo]-naphthol-(2) (PAN), TX-100 and N,N'-diphenylbenzamidine (DPBA) at pH range 7.8-9.4. The red coloured Cu(II)-PAN-(TX-100)-DPBA complex in chloroform shows maximum absorbance at 520 nm with molar absorptivity value of 1.14x10(5) l mol(-1) cm(-1). The detection limit of the method is 2 ng ml(-1) organic phase. The system obeys Beer's law up to 0.6 mug Cu(II) ml(-1) in organic solution. Most of the common metal ions generally found associated with copper do not interfere. The repeatability of the method was checked by finding relative standard deviation (RSD) (n=10) value for solutions each containing 0.2 mug ml(-1) of Cu(II) and the RSD value of the method was found to be 1.5%. The validity of the method has been satisfactorily examined for the determination of copper in soil and airborne dust particulate samples.  相似文献   

8.
The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4x10(-8) mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4x10(-8)-8x10(-7) mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant.  相似文献   

9.
A new spectrofluorimetric method was developed for determination of trace amount of Coenzyme II (NADP). Using europium ion-doxycycline (DC) as a fluorescent probe, in the buffer solution of pH 8.44, NADP can remarkably enhance the fluorescence intensity of the Eu(3+)-DC complex at lambda=612 nm and the enhanced fluorescence intensity is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 3.3 x 10(-7) to 6.1 x 10(-6) mol l(-1) with detection limit of 6.8 x 10(-8) mol l(-1). This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples and in serum samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Eu(3+)-DC system and the Eu(3+)-DC-NADP system have been also discussed.  相似文献   

10.
A spectrophotometric method is developed for the determination of traces of copper(II), based on the catalytic oxidative coupling reaction of 3-hydroxyacetanilide with 3-methyl-2-benzothiazolinone hydrazone in the presence of ammonia and hydrochloric acid. Beer's law is obeyed in the copper(II) concentration range of 0.008-0.16 microg mL(-1), and the molar absorptivity at 530 nm is 2.5x10(5) L mol(-1) cm(-1). The Sandell's sensitivity of the product is 0.000254 microg cm(-2). The optimum reaction conditions and other important analytical parameters have been investigated. The proposed method is applied to the analysis of water and soil samples and the results are compared with the literature method.  相似文献   

11.
A novel voltammetry with a modified gold electrode for the direct determination of copper in environmental samples, without any pretreatment, is proposed in this paper. A porous disorganized monolayer was formed on the surface of the gold electrode by the self-assembly of mercaptoacetic acid (MAA), which could selectively permeate small molecules. Subtractive square wave anodic stripping voltammetry (SASV) was applied to determine copper, in which the underpotential deposition (UPD) of copper was used as the deposition step. The linear range was from 8 x 10(-7) to 1 x l0(-5) mol l(-1) by the modified electrode in the presence of human serum albumin, and the determination was not interfered with common metal ions. Copper in a real environmental sample was successfully detected.  相似文献   

12.
The stability constants for copper(I) chelate with 2,9-dimethyl-1,10-phenanthroline are determined by thermal lensing, and the advantages over spectrophotometric determination of stability constants are shown. Changes in the photometric reaction when moving from the microgram to the nanogram level of reactants are discussed. The conditions for the thermal-lens determination of copper are optimized. The limit of detection of copper is 3x10(-8) mol dm(-3), and the linear calibration range 1x10(-7)-1x10(-5) mol dm(-3).  相似文献   

13.
Lu X  Wang Z  Geng Z  Kang J  Gao J 《Talanta》2000,52(3):411-416
A differential pulse anodic stripping voltammetry was developed for the sensitive and selective determination of Co(II) at 2,4,6-tri(3,5-dimethylpyrazoyl)-1,3,5-triazine modified carbon paste electrode in 0.1 mol l(-1) NH(4)Cl solution (pH 4.95). The oxidation peak of Co(II) was observed at 0.03 V(vs. Ag/AgCl) by scanning the potential in a positive direction. The analysis procedure consisted of an open circuit accumulation step in stirred sample solution. This was followed by medium exchange to a clean solution and subsequently an anodic potential scan was effect to obtain the voltammetric peak. The current was proportional to the concentration of the Co(II) ion in a range of 1x10(-8)-1x10(-6) mol l(-1) for 3 min accumulation and in the range of 1x10(-9)-1x10(-8) mol l(-1) for 5 min accumulation; most of metal ions do not interfere with the determination. The developed method was applied to Co(II) determination in potable water.  相似文献   

14.
Wang H  Hua E  Yang P 《Talanta》1995,42(10):1519-1524
The polarographic and voltammetric behaviour of the copper(II)-mitoxantrone complex have been studied. A well-defined linear sweep voltammetric peak was obtained at -0.275 V (vs. Ag AgCl ) or -0.325 V (vs. SCE) in ammonia-ammonium chloride (20 mmoll(-1), pH 9.0). The characteristics of the peak have been examined in detail. The experimental results show that the reduction of the copper(II) mitoxantrone complex is irreversible and the peak displays adsorption characteristics at the dropping mercury electrode. A mechanism is proposed for the reduction of the complex, comprising one-electron reduction of the copper(II) of the complex, is reduced directly in the complex form. A single-sweep oscillopolarographic method was develped for the determination of copper(II). The peak current is proportional to the concentration over the range 5 x 10(-8)-2 x 10(-5) mol l(-1). The method reported here has the advantage that the interference of many common metal ions is small.  相似文献   

15.
Zhou Y  Nagaoka T  Li F  Zhu G 《Talanta》1999,48(2):461-467
A novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO(4). Hydrogen peroxide can be directly determined by luminol-KIO(4)-H(2)O(2) CL system. The detection limit was 3.0x10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0x10(-7)-6.0x10(-4) mol l(-1). The relative standard deviation of H(2)O(2) was 1.1% for 2.0x10(-6) mol l(-1) (N=11). Glucose was indirectly determined through measuring the H(2)O(2) generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H(2)O(2), which, in turn, coupled with the luminol-KIO(4)-H(2)O(2) CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mug ml(-1). The relative standard deviation was 2.1% for 10 mug ml(-1) (N=11). Detection limit of glucose was 0.08 mug ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO(4)-H(2)O(2) CL system. The calibration curve was linear over the range of 1.0x10(-7)-1.0x10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0x10(-7) mol l(-1) (N=11). Detection limit of ascorbic acid was 6.0x10(-8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection.  相似文献   

16.
A photometric method has been developed for the determination of sulfide at 10(-5) mol dm(-3) levels, which is based on the reaction of sulfide with a given excess amount of bismuth(III) to form a precipitate of bismuth(III) sulfide and on the spectrophotometric measurement of the residual bismuth(III) at 335 nm after extracting with bismuthiol II reagent from an aqueous solution containing acetate buffer into benzene. The presence of sulfite and thiosulfate up to 0.002 mol dm(-3) did not cause any interference in the determination of sulfide, because both sulfite and thiosulfate do not produce any precipitate with bismuth(III). A linear calibration plot with a negative slope was obtained for sulfide over the range of 5.00 x 10(-7) - 3.00 x 10(-5) mol dm(-3) (16.0 - 960 ppb). An experimental calibration plot was in accord with the theoretical plot, taking into account the known excess of bismuth(III), showing that the reaction of sulfide with bismuth(III) proceeded to completion. The relative standard deviation of results from 10 replicate determinations of standard sulfide (2.00 x 10(-5) mol dm(-3)) was 0.44%. The proposed method was successfully applied to the determination of sulfide in hotspring water samples without any pretreatment.  相似文献   

17.
A flow-injection (FI) methodology using tris(2,2'-dipyridyl)ruthenium(II), [Ru(dipy)3(2+)], chemiluminescence (CL) was developed for the rapid and sensitive determination of three thioxanthene derivatives, namely zuclopenthixol hydrochloride, flupentixol hydrochloride and thiothixene. The method is based on the CL reaction of the studied thioxanthenes with [Ru(dipy)3(2+)] and Ce(IV) in a sulfuric acid medium. Under the optimum conditions, calibration graphs were obtained over the concentration ranges 0.002-6 migrograms/ml for zuclopenthixol hydrochloride, 0.5-15 micrograms/ml for flupentixol hydrochloride and 0.05-7.5 micrograms/ml for thiothixene. The limits of detection (s/n = 3) were 4.2 x 10(-9) mol/l zuclopenthixol hydrochloride, 2 x 10(-8) mol/l flupentixol hydrochloride and 4.5 x 10(-8) mol/l thiothixene. The method was successfully applied to the determination of these compounds in dosage forms and biological fluids.  相似文献   

18.
Lin Z  Chen X  Cai Z  Li P  Chen X  Wang X 《Talanta》2008,75(2):544-550
Amino acids with different chemical structures have different abilities in terms of increasing the intensity of chemiluminescence (CL) of tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)3(2+)]. In a flow system, CL caused by the reaction between Ru(bpy)3(3+) and 15 amino acids was observed, but only tryptophan (Trp) and histidine (His) enhanced the intensity obviously, and so the CL of Trp and His and their molecular groups was studied. A calculation of the ionization potentials (IPs) of their N atom indicated that the CL intensities of these compounds depended on their IPs. In addition, the flow system was used for the determination of Trp and His, and the detection limits were 3 x 10(-8) mol L(-1) for His and 2.5 x 10(-9) mol L(-1) for Trp. The calibration curves for the two amino acids were 1.0 x 10(-7) to 5.0 x 10(-3) mol L(-1) for His and 1.0 x 10(-8) to 1.0 x 10(-4) mol L(-1) for Trp. The proposed approach was applied to the determination of His in Ganoderma.  相似文献   

19.
Araujo L  Wild J  Villa N  Camargo N  Cubillan D  Prieto A 《Talanta》2008,76(1):111-115
In this work, the reactions of various copper ions with 1,3,3-trimethyl-2-[5-(1,3,3-trimethyl-1,3-dihydro-indol-2-ylidene)-penta-1,3-dienyl]-3H-indolium--more commonly known as dimethylindodicarbocyanine polymethyne dye (DIDC)--as well as the application of the results obtained for the development of a spectrophotometric method for the determination of Cu(I), Cu(II) and Cu(III) are described. Cu(I) and Cu(II) in the presence of chloride ions and DIDC reagent are extractable by a variety of organic solvents. It is important to emphasize that Cu(I) was extracted under considerably different experimental conditions than Cu(II). The optimum conditions for the extraction of the Cu ion associates with DIDC by amyl acetate and the determination of Cu(I) and Cu(II) were found to be: pH 3-5 and pH 3-6 and chloride concentrations of 0.5-0.8 mol L(-1) and 3-6 mol L(-1) for Cu(I) and Cu(II), respectively. The molar absorptivities for Cu(I) and Cu(II) are 1.8x10(5) L mol(-1) cm(-1) and 1.2x10(5) L mol(-1) cm(-1), respectively. A reaction mechanism is suggested. Cu(III) does not extract in the presence of chloride ions. However, Cu(III) is a strong oxidative agent which can cause the decolourisation of the DIDC reagent. The optimum conditions for Cu(III) determination were found to be: 2x10(-5) mol L(-1) DIDC; pH 8; water:acetone 4:1 medium. The developed procedures were tested for the determination of Cu(I), Cu(II) and Cu(III) in semiconductor samples.  相似文献   

20.
A new thiol weak-fluorescence probe, 5-maleimidyl-2-(m-methylphenyl)benzoxazole (MMPB), gives a highly fluorescence product in the presence of Cys. In this paper, MMPB has been developed for the fluorimetric determination of cysteine (Cys). At lambda(ex)/lambda(em) = 305.6/425.6 nm, the linear range is from 0 to 3.3 x 10(-7) mol l(-1) and the detection limit (sigma = 3) of 6.2 x 10(-10) mol l(-1). The main advantage of this method lies in the relative high selectivity compared with the methods using other N-substituted maleimide type of thiol reagents, in which 0.15-fold (molar ratio) of GSH is allowed and most of other amino acids at 100-fold (molar ratio) level had no obvious effect on the results. The proposed method has been applied to the determination of Cys in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号