首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlled adsorptive accumulation of 2-thioorotic acid (6-carboxy-2-thiouracil) on the hanging mercury drop electrode provides the basis for the direct stripping measurement of that compound in the nanomolar concentration level. Differential pulse voltammetry, following 3 min preconcentration, yields a detection limit of 5.0×10-10 M 2-thioorotic acid. The cathodic stripping response is evaluated with respect to experimental parameters such as preconcentration time and potential, bulk concentration and others. Best results are obtained using a 0.001 M NaOH electrolyte.Two different methods of cathodic stripping voltammetry can be proposed for the determination of 2-thioorotic acid and the reproducibility of these methods is studied.  相似文献   

2.
Controlled adsorptive accumulation at the hanging mercury drop electrode enables 0.8–11 × 10?5 M chlordiazepoxide to be quantified by differential-pulse stripping voltammetry with accumulation times of 1–3 min. With 3-min accumulation, the peak current is enhanced 12-fold for 1.0 × 10?7 M chlordiazepoxide compared to the current from differential pulse polarography. The detection limit is 0.9 × 10?9 M for 4-min accumulation. The procedure is applied to spiked human serum after preseparation of the drug on a Sep-Pak C18 cartridge.  相似文献   

3.
The Ge(IV)—Ge(0) system was investigated by cyclic and stripping voltammetry at HMDE in acidic pyrogallol medium and in phosphate, borate and carbonate buffers. It was found that germanium electrodeposited from dilute Ge(IV) solutions dissolved anodically forming two peaks corresponding to the oxidation of the unstable homogeneous and stable heterogeneous amalgams. Both peaks can be exploited analytically for the determination of traces of germanium but due to the complex nature of the germanium amalgam the sensitivity and reproducibility of the determinations are lower compared to the results obtained for metals well-soluble in mercury.  相似文献   

4.
Technetium(VII) was separated from interfering substances by extraction with 0.01M tetraphenylarsonium chloride in chloroform. To avoid back-extraction, enrichment at the hanging mercury drop electrode (HMDE) has been carried out directly in the organic phase after addition of 0.01M NaOH as an electrolyte and ethanol as a homogenized agent. By application of a deposition voltage of –1.6 V, as well as DPCSV, a distinct current signal at –0.26 V (vs. Ag/AgCl) was obtained. The detection limit was found to be 3·10–8 M Tc.  相似文献   

5.
Arsenic (III), respectively arsenic(V) after the reduction were determined in model solutions and some inorganic and organic materials by fast scan differential pulse cathodic stripping voltammetry and by direct current cathodic stripping voltammetry with a rapid increase of potential. The accumulation on a hanging mercury drop electrode followed by cathodic stripping was carried out in 0.7–0.8M HCl or 1–2M H2SO4 solutions containing Cu(II)-ions. Detection limits calculated from regression parameters was determined to be under 1 ng/ml for the samples containing very low arsenic concentrations. The relative standard deviation did not reach 8% for arsenic contents about of 5 ng/ml.  相似文献   

6.
Adsorptive stripping voltammetry was used for the determination of trace amounts of the dye Tartrazine (E-102) by square-wave (SWS) and differential pulse techniques (DPS). Its adsorptive voltammetric behaviour was investigated at different pH media. NH4Cl/NH3 buffer solution was chosen as the most suitable, taking into account the sensitivity and definition of the reduction peaks obtained. The effects of the experimental parameters on the determination are discussed. Standard deviations of 3.3% and 2.6% were obtained by SWS and DPS for 100 and 50 μg/L Tartrazine solutions, respectively (n = 10). Both methods were applied to determine the dye in several commercial soft drinks, containing very small amounts of it. Measurements were made directly in the commercial samples. A comparison of the results obtained by the proposed voltammetric methods with those of an HPLC method was also made. Good correlations between the voltammetric results and the values supplied by the manufacturer were found, whereas recoveries of the same order of magnitude were obtained by the HPLC method. Received: 23 May 1996 / Revised: 5 July 1996 / Accepted: 10 July 1996  相似文献   

7.
8.
Lutetium has been determined by differential pulse anodic stripping voltammetry in an acidic solution containing Zn-EDTA. Lutetium (III) ions liberated zinc (II), which was preconcentrated on a hanging mercury drop electrode and stripped anodically, resulting in peak current linearly dependent on lutetium (III) concentration. Less than 0.4 ng mL−1 lutetium could be detected after a 2 min deposition.   相似文献   

9.
Farias PA  Ohara AK  Takase I  Ferreira SL  Gold JS 《Talanta》1993,40(8):1167-1171
A new method is described for the determination of Ni based on the cathodic adsorptive stripping of Ni(II) complexed with hydroxynaphthol blue (HNB) at a static mercury drop electrode. Optimal conditions were found to be: accumulation potential -0.50 V (vs. Ag/AgCl); final potential -1.10 V; accumulation time 50 sec; scan rate 200 mV/sec; linear scan mode; filter 0.1 sec; supporting electrolyte acetic acid/acetate (0.25M, pH = 6.0) and concentration of HNB 3.3 x 10(-5)M. The response of the system was found to be linear in a range of Ni concentrations from 25 ppb to the detection limit. The detection limit was found to be 1.7 nM (0.10 ppb) with 2 mins of accumulation time. The effect of various potential interferences (including a variety of cations, anions and organic surfactants) were also studied. With the exception of Co, at less than equimolar concentrations no significant interferences were observed. Al was found to interfere at high concentrations with respect to Ni, but Al concentrations up to 1000 ppb may be masked by sodium citrate or sodium fluoride. The utility of the method is demonstrated by the recovery of Ni in a doped sample of commercial mineral water.  相似文献   

10.
An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles.  相似文献   

11.
Ertas FN  Fogg AG  Moreira JC  Barek J 《Talanta》1993,40(10):1481-1488
The behaviour of the copper complexes of glycyl-L-histidyl-glycine (GHG) was investigated using cyclic voltammetry and differential pulse voltammetry after their adsorptive accumulation on the surface of a hanging mercury drop electrode (HMDE). The nature of the observed cathodic and anodic peaks was established and optimum conditions were found for the differential pulse cathodic stripping voltammetric detemination of GHG at the 1 x 10(-8)M concentration level using adsorptive accumulation at -0.20 V vs. Ag/AgCl reference electrode and the cathodic stripping peak around -0.4 V (pH 8.3). This peak corresponds to the reduction of the Cu(I)-GHG complex formed at the HMDE surface as an intermediate in the reduction of Cu(II)-GHG to Cu(O)amalgam.  相似文献   

12.
Dimenhydrinate exhibits a single adsorptive stripping peak at a hanging mercury drop electrode after accumulation at 0.0V vs Ag/AgCl electrode at pH 3.8 (acetate buffer). The addition of trace amounts of copper ions enhanced the dimenhydrinate peak and its height depends on the concentration of each dimenhydrinate and Cu2+. The adsorptive stripping response was evaluated with respect to accumulation time and potential, concentration dependence, electrolyte, the presence of other purines, surfactants and other metal ions, and some variables. The calibration graph for dimenhydrinate determination is linear over the range 2.0×10–8–2.0×10–7 M (pre-concentration for 60s). The correlation factor is found to be 0.985 and RSD is 3.2% at 1.0×10–7 M. Detection limit is 1.0×10–8 M after 5 min accumulation. The determination of dimenhydrinate in pharmaceutical formulations by the proposed method is also reported.  相似文献   

13.
The electrochemical behavior of lumazine (LMZ), an important antibacterial agent, has been studied at the hanging mercury drop electrode (HMDE). The nature of the process taking place at the HMDE was clarified. Its adsorption behavior at HMDE has been studied by using a.c and cyclic voltammetry (CV). Both the molecule and its reduced product appeared to be adsorbed at the surface of the electrode. Controlled adsorptive accumulation of LMZ on the HMDE provides the basis for the direct stripping measurement of that compound in the subnanomolar concentration level. Experimental and instrumental parameters for the quantitative determination were optimized. Phase-selective a.c voltammetry provided the best signal and gave a detection limit of 0.15 microg L(-1) (9.0 x 10(-10) mol/L) LMZ in aqueous solution. Molecules or ions which may interfere were studied.  相似文献   

14.
The electrochemical behavior of lumazine (LMZ), an important antibacterial agent, has been studied at the hanging mercury drop electrode (HMDE). The nature of the process taking place at the HMDE was clarified. Its adsorption behavior at HMDE has been studied by using a.c and cyclic voltammetry (CV). Both the molecule and its reduced product appeared to be adsorbed at the surface of the electrode. Controlled adsorptive accumulation of LMZ on the HMDE provides the basis for the direct stripping measurement of that compound in the subnanomolar concentration level. Experimental and instrumental parameters for the quantitative determination were optimized. Phase-selective a.c voltammetry provided the best signal and gave a detection limit of 0.15 μg L–1 (9.0 × 10–10 mol/L) LMZ in aqueous solution. Molecules or ions which may interfere were studied.  相似文献   

15.
The behaviour of selenium(IV) in cathodic stripping voltammetry is evaluated systematically. The effects of copper concentration, pH, deposition potential and complexing agents on the stripping peak are examined and criteria are given for the choice of suitable quantitative parameters. The detection limit was found to be 20 ng l?1 and the background contamination level was 35 ng l?1. Zinc and lead do not affect the determination of selenium if EDTA is added to the solution whereas cadmium interferes badly; the corresponding mechanisms are discussed.  相似文献   

16.
17.
Summary Controlled adsorptive accumulation of orotic acid (vitamin B13) at the hanging mercury drop electrode (HMDE) provides the basis for the direct stripping measurement of that compound in nanomolar concentration. Differential pulse voltammetry applied to a sample at pH 11.20 fixed in NaOH has a detection limit of 5.0 × 10–10 mol/l of orotic acid (with 3 min of preconcentration).The cathodic stripping response is evaluated with respect to experimental parameters such as preconcentration time, preconcentration potential, bulk concentration and other parameters. Cathodic stripping voltammetry can be proposed for the determination of the orotic acid, the reproducibility of this method was studied.
Cathodic-Stripping Voltammetrie von Orotsäure (Vitamin B13) an der hängenden Quecksilbertropfelektrode
  相似文献   

18.
A.H. Rahier  S. Lunardi  S.M. George 《Talanta》2010,82(5):1839-1844
The sensitive differential pulse anodic stripping voltammetry (DPASV) proposed originally by Ishiyama et al. (2001) has been revised and improved to allow the accurate measurement of silicon on a hanging mercury drop electrode (HMDE) instead of a glassy carbon electrode. We assessed the rate of formation of the partially reduced β-silicododecamolybdate and found that metallic mercury promotes the reaction in the presence of a large concentration of Fe3+. The scope of the method has been broadened by carrying out the measurements in the presence of a constant amount of Fe3+. The limit of detection (LOD) of the method described in the present paper is 100 μg Si g−1 of steel, with a relative precision ranging from 5% to 12%. It can be further enhanced to 700 ng Si g−1 of steel provided the weight of the sample, the dilution factors, the duration of the electrolysis and the ballast of iron are adequately revised. The tolerance to several interfering species has been examined, especially regarding Al3+, Cr3+ and Cr VI species. The method was validated using four low-alloy ferritic steels certified by the National Institute of Standards and Technology (NIST). Its application to nickel base alloys as well as to less complicated matrixes is straightforward. It has also been successfully applied to the determination of free silicon into silicon carbide nano-powder.  相似文献   

19.
Banica FG  Fogg AG  Moreira JC 《Talanta》1995,42(2):227-234
Oxidized glutathione (GSSG) can be determined after previous accumulation on the HMDE at E > -0.2 V (vs. the Ag AgCl reference electrode). GSH is formed during the accumulation, possibly by a mercury-ion-assisted hydrolytic disproportionation of GSSG. In the subsequent cathodic scan GSH is released and catalyses the reduction of nickel ion, giving a peak located at -0.6 V. This enables the determination of GSSG by differential-pulse cathodic stripping voltammetry at pH 7.0 in the phosphate acetate or MOPS buffer containing 0.5-1.0 mM Ni(II). The detection limit is 10 nM. The calibration graph is linear even in the presence of small amounts of human serum albumin, HSA. However, HSA increases the detection limit (20 nM for 3 x 10(-4)% HSA). Acetyl-cysteine in small excess or Cu(II) present as reagent impurity do not interfere. Glutathione, cysteine and similar compounds, which accumulate as mercury salts and form stable nickel complexes, will interfere. The method is put forward as a novel alternative stripping voltammetric method to those involving accumulation and determination as mercury or copper salts and complexes, in the knowledge that it may have advantages in particular analytical situations. In particular the method discriminates against compounds which accumulate as mercury salts but which do not form stable nickel complexes.  相似文献   

20.
Conditions convenient for the determination of traces of seIenium(IV) by cathodic stripping technique are described. Several electrolytes were tested. Three procedures are given in which the troublesome splitting of the stripping peak is eliminated. Suitable conditions include perchloric acid solution at elevated temperature, hydrochloric acid solution after preconcentration at zero current, and perchloric acid solution containing a small amount of iodide. The detection limits are 5 × 10-9, 2 × 10-9 and 5 × 10-10 mol dm-3, respectively. The time required for the entire procedure is about 30 min starting with a soluble seIenium(IV) sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号