首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Puri S  Dubey RK  Gupta MK  Puri BK 《Talanta》1998,46(4):655-664
A highly selective, sensitive, and fairly rapid and economical differential pulse polarographic (DPP) method has been reported for the determination of trace amounts of vanadium and molybdenum in standard alloys and various environmental samples. The morpholine-4-carbodithioates of these metals were retained (>99% recovery) quantitatively on microcrystalline naphthalene in the pH range 4.5-6.9 for vanadium and 1.5-4.5 for molybdenum. These metals were determined by DPP after desorption with 10 ml of 1 M HCl. Vanadium and molybdenum may also be preconcentrated by passing their aqueous solutions under similar conditions on morpholine-4-dithiocarbamate CTMAB-naphthalene adsorbent packed in a column at a flow rate of 1-5 ml min(-1) and determined similarly. The detection limits are 0.20 ppm for vanadium and 0.04 ppm for molybdenum at minimum instrumental settings (signal to noise ratio=2). The linearity is maintained in the following concentration ranges, vanadium 0.50-10.0 and molybdenum 0.10-9.0 ppm, with a correlation factor of 0.9996 (confidence interval of 95%, slopes 0.0196 and 0.01497 muA mug(-1), intercepts 3.65x10(-3) and -1.92x10(-3) respectively) and relative standard deviation of 1.1% in the microcrystalline method, while in the column method, the linearity is maintained in the concentration ranges, 0.50-6.5 for vanadium and 0.10-5.5 ppm for molybdenum with correlation factor of 0.9994 (with confidence interval of 95%, slopes 0.0194, 0.015 muA mug(-1), intercepts 3.60x10(-3) and -1.90x10(-3) respectively) and relative standard deviation of 1.4%. Various parameters such as the effect of pH, reagent, naphthalene and CTMAB concentrations, volume of aqueous phase and interference of a large number of metal ions on the estimation of vanadium and molybdenum have been studied in detail to optimize the conditions for their voltammetric determination at trace level in various standard alloys and environmental samples.  相似文献   

2.
《Analytical letters》2012,45(15):2729-2746
Abstract

A highly selective, sensitive and rapid differential pulse polarographic method has been developed for the estimation of trace amounts of indium in standard alloy, ore, synthetic and environmental samples. The morpholine-4-dithiocarbamate of indium(III) is adsorbed on microcrystalline naphthalene in the pH range 3.5–6.4. The metal complex is desorbed with HCl and determined with a differential pulse polarograph (DPP). This metal may alternatively be quantitatively retained on morpholine-4-dithiocarbamate-cetyltrimethylammonium bromidenaphthalene adsorbent packed in a column at a flow rate of 0.5–5.0 ml/min and determined similarly. The detection limit is 0.10 ppm at the minimum instrumental setting (signal to noise ratio = 2). Indium has been determined in the concentration range 0.70–15.0 ppm with a correlation factor of 0.9996 and a relative standard deviation of 0.76% (n = 8). In the column method, the linearity is maintained in the concentration range 0.70–8.5 ppm with a correlation factor of 0.9994 and a relative standard deviation of 0.89% (n = 8). Various parameters, such as the effect of pH, volume of aqueous phase, reagent, and naphthalene concentrations and interference of a large number of metal ions and anions on the estimation of indium have been studied in detail to optimize the conditions for its trace determination in various complex materials.  相似文献   

3.
The present work describes a rapid, cost-effective analytical procedure for the determination of lead and cadmium in environmental samples by off-line preconcentration with polyurethane foam (PUF) functionalised with acetylacetone by covalent coupling through the–N=N–group. The optimum pH ranges for quantitative uptake were 5–7, 6–7 for lead and cadmium, respectively. The kinetics of metal uptake by the new foam was found to be fast, reaching equilibrium in a few minutes. Metal ions were sorbed in the minicolumn, eluted with acid solutions and determined by flame atomic absorption spectrometer (FAAS). Under the optimum conditions, the preconcentration factors obtained were 288 for Cd and 224 for Pb. The limits of detection of the proposed procedure were 0.09 and 0.07 µg L?1 for Pb and Cd, respectively. The relative standard deviation (RSD) was less than 10%. The accuracy of the method was estimated by using environmental samples that were spiked with Cd and Pb ions. The capacity of the acetylacetone bonded PUF (AA-BPUF) sorbent at optimum conditions has been found to be 4.5, 6.9 µmol g?1 of sorbent for Pb and Cd, respectively.  相似文献   

4.
Abstract

High performance liquid chromatographie method for the simultaneous determination of ppm levels of cadmium, nickel, lead, zinc, cobalt, copper and bismuth in biological samples has been developed. Each 250 mg of Bovine Liver(NBS 1577) or Oyster Tissue(NBS 1566) was ashed in a muffle furnace over night at 500 to 55O°C. Then the ash was treated with 1.5 ml of 2 N hydrochloric acid; and the solution was put into a separatory funnel. The dissolved heavy metals were extracted into chloroform as hexamethylenedithiocarbamato chelates. The metal chelates were separated on a reversed phase column(5 μm, ODS, 4.6 × 15O mm), and determined by measuring the peak height of each metal chelate. Cd, Ni, Pb, Zn and Cu were determined accurately over the concentration range of 0.5–850 ppm with standard deviation ca. 7%.  相似文献   

5.
A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCI solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 x 10(-4) M). Finally, 1 x 10(-5) M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 x 10(-10) to 1.05 x 10(-9)M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.  相似文献   

6.
In this article a sensitive differential pulse stripping voltammetry technique on Nafion‐coated bismuth‐film electrode (NCBFE) was studied for the simultaneous determination of zinc, cadmium, and lead ions in blood samples at ultra trace levels. The measurement results were in excellent agreement with those obtained from atomic absorption spectroscopy. Various operational parameters were investigated and discussed in terms of their effect on the measurement signals. Under optimal conditions, calibration curves for the simultaneous determination of zinc, cadmium, and lead ions were achieved, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L?1 for Cd(II), 0.13 μg L?1 for Pb(II), and 0.97 μg L?1 for Zn(II) respectively.  相似文献   

7.
Summary Various simultaneous effects of humic acids on the current and potential of differential pulse anodic stripping peaks of copper, lead, cadmium and zinc in weakly alkaline and acidic (pH 2) solutions have been investigated and interpreted with regard to metal complexation and the adsorption of humic acid on the mercury electrode. The applicability of the standard additions method for metal quantitation and the experimental conditions for UV-photolysis with a high-pressure mercury lamp have been examined in model as well as real water samples.  相似文献   

8.
N-methylethylxanthocarbamate has been used as an analytical reagent for the determination of trace amounts of cadmium in standard alloys, biological, and environmental samples. The reagent has been found to form a water insoluble complex with cadmium. It is quantitatively adsorbed over microcrystalline naphthalene in the pH range 2.5 to 12.0. The metal complex is desorbed with HCl and cadmium determined with a differential pulse polarograph. The detection limit is 0.05 ppm (signal-to-noise ratio = 2) and the linearity is maintained in the concentration range 0.2–25 g/ml, with correlation coefficient of 0.9995 and a relative standard deviation of ±0.81%. Characterization of the electroactive process includes an examination of the degree of reversibility. Various parameters, such as the effect of pH, reagent concentration, amount of naphthalene, volume of aqueous phase, and the interference of a large number of metal ions on the determination of cadmium, have been studied in detail to optimize the conditions for its determination in various complex materials.  相似文献   

9.
流动注射—二极管阵列检测分光光度法同时测定铅和镉   总被引:14,自引:0,他引:14  
黎源倩  杨经国 《分析化学》1998,26(7):843-846
建立流动注射-电荷耦合器件二极管阵理分光光度法装置,研究了以meso-四(4-三甲铵苯基)卟啉为显色剂同时测定铅和镉的方法,镉和铅测定的线性范围为0~2.0mg/L和0~2.5mg/L镉的检出限为0.014mg/L,铅为0.015mg/L。进样频率为60次/h,对合成样品和陶瓷食具容器浸泡液中铅和镉进行了同时测定,获得满意的结果,样品的平均标准加入回收率为100.9%,相对标准偏差小于8.8%。  相似文献   

10.
A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCl solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 × 10–4 M). Finally, 1 × 10–5 M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 × 10–10 to 1.05 × 10–9 M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.  相似文献   

11.
Zinc, cadmium, and lead react quantitatively in the pH ranges of 3.9–9.2, 3.5–11.2, and 5.5–10.5, respectively, to form water insoluble and thermally stable complexes which are easily extracted into molten naphthalene. The solid naphthalene containing the colorless complex is dissolved in chloroform and then replaced by copper to develop a yellow color in the chloroform layer. The absorbance in each case is measured at 435 nm against reagent blank. Beer's law holds over the concentration ranges of 3.5–95.0, 3.0–105.0, and 8.5–125. 0 μg for zinc, cadmium, and lead, respectively, into 10 ml of the chloroform solution. The molar absorptivities are calculated to be Zn, 1.048 × 104 liters mol−1 cm−1; Cd, 1.054 × 104 liters mol−1 cm−1, and Pb, 1.014 × 104 liters mol−1 cm−1 with sensitivities in terms of Sandell's definition of 0.0062 μg Zn/cm2, 0.010 μg Cd/cm2, and 0.020 μg Pb/cm2, respectively. Ten replicate determinations of sample solutions containing 30 μg of zinc, 18.7 μg of cadmium, and 42.5 μg of lead give mean absorbances 0.480, 0.175, and 0.208 with standard deviations of 0.0017, 0.0013, and 0.0015 or relative standard deviations of 0.35, 0.74, and 0.72%, respectively. The interference of various ions has been studied and the method has been applied to the determination of cadmium in various synthetic mixtures and zinc and lead in some standard reference materials.  相似文献   

12.
Pb(II), Cd(II) and Cu(II) ions were separated and preconcentrated by solid-phase extraction on octadecyl-bonded silica membrane disks modified with a new S–N-containing Schiff base (bis-2-thiophenal propandiamine) (BTPD) followed by elution and atomic absorption spectrometric detection. The method was applied as a separation and detection method for lead(II), cadmium(II) and copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The maximum capacity of the membrane disks modified by 4?mg of BTPD was found to be 668 ± 10, 480 ± 8 and 454 ± 7?µg of lead, cadmium and copper, respectively. The limit of detection of the proposed method is 0.25, 0.01 and 0.02?ng/mL for lead, cadmium and copper, respectively.  相似文献   

13.
Salih B  Denizli A  Kavaklı C  Say R  Pişkin E 《Talanta》1998,46(5):1205-1213
The dithizone-anchored poly (EGDMA-HEMA) microbeads were prepared for the removal of heavy metal ions (i.e. cadmium, mercury, chromium and lead) from aqueous media containing different amounts of these ions (25-500 ppm) and at different pH values (2.0-8.0). The maximum adsorptions of heavy metal ions onto the dithizone-anchored microbeads from their solutions was 18.3, Cd(II); 43.1, Hg(II); 62.2, Cr(III) and 155.2 mg g(-1) for Pb(II). Competition between heavy metal ions (in the case of adsorption from mixture) yielded adsorption capacities of 9.7, Cd(II); 28.7, Hg(II); 17.6, Cr(III) and 38.3 mg g(-1) for Pb(II). The same affinity order was observed under non-competitive and competitive adsorption, i.e. Cr(III)>Pb(II)>Hg(II)>Cd(II). The adsorption of heavy metal ions increased with increasing pH and reached a plateaue value at around pH 5.0. Heavy metal ion adsorption from artificial wastewater was also studied. The adsorption capacities are 4.3, Cd(II); 13.2, Hg(II); 7.2, Cr(III) and 16.4 mg g(-1) for Pb(II). Desorption of heavy metal ions was achieved using 0.1 M HNO(3). The dithizone-anchored microbeads are suitable for repeated use (for more than five cycles) without noticeable loss of capacity.  相似文献   

14.
The potential of modified multiwalled carbon nanotubes (a solid-phase extraction sorbent), for the simultaneous separation and preconcentration of lead, cadmium and nickel; has been investigated. Lead, cadmium and nickel, were adsorbed quantitatively; on modified multiwalled carbon nanotubes (in the pH range of 2–4). Parameters influencing, the simultaneous preconcentration of Pb(II), Ni(II) and Cd(II) ions (such as pH of the sample, sample and eluent flow rate, type and volume of elution solution and interfering ions), have been examined and optimized. Under the optimum experimental conditions, the detection limits of this method. for Pb(II), Ni(II) and Cd(II) ions, were 0.32, 0.17 and 0.04 ng mL−1 in original solution, respectively. Seven replicate determinations, of a mixture of 2.0 μg mL−1 lead and nickel, and 1.0 μg mL−1 cadmium; gave a mean absorbance of 0.074, 0.151 and 0.310, with relative standard deviation 1.7%, 1.5% and 1.2%, respectively. The method has been applied, to the determination of trace amounts of lead, cadmium and nickel; in biological and water samples, with satisfactory results.   相似文献   

15.
A simple and sensitive preconcentration analysis-atomic absorption spectrometric procedure is described for the determination of lead, cadmium and nickel. The method is based upon on-line preconcentration of metal ions on a minicolumn of Cibacron Blue F3-GA immobilized on poly(hydroxyethylmethacrylate), poly(HEMA). The enrichment factors obtained were 42 for lead, 52 for cadmium and 63 for nickel (sample volume 10 mL and sample flow rate 5 mL/min). The relative standard deviations (n = 10), in 10 mL sample solutions containing 100 microg/L Pb(2+), 10 microg/L Cd(2+) and 100 microg/L Ni(2+) were 8.9, 3.7 and 3.5%, respectively. The limits of detection (blank + 3s) (n = 10), were found to be 12.01 microg/L for Pb(2+), 1.34 microg/L for Cd(2+) and 28.73 microg/L for Ni(2+). The accuracy of the system was checked with certified and tap water samples spiked with known amounts of metal ions. No significant difference was found between the achieved results and the certified values.  相似文献   

16.
Square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for simultaneous determination of cadmium, lead, and copper in siliceous spicules of marine sponges, directly in the hydrofluoric acid solution (approximately 0.55 mol L(-1) HF, pH approximately 1.9). A thin mercury-film electrode (TMFE) plated on to an HF-resistant epoxy-impregnated graphite rotating-disc support was used. The optimum experimental conditions, evaluated also in terms of the signal-to-noise ratio, were as follows: deposition potential -1100 mV vs. Ag/AgCl, KCl 3 mol L(-1), deposition time 3-10 min, electrode rotation 3000 rpm, SW scan from -1100 mV to +100 mV, SW pulse amplitude 25 mV, frequency 100 Hz, DeltaE(step) 8 mV, t(step) 100 ms, t(wait) 60 ms, t(delay) 2 ms, t(meas) 3 ms. Under these conditions the metal peak potentials were Cd -654 +/- 1 mV, Pb -458 +/- 1 mV, Cu -198 +/- 1 mV. The electrochemical behaviour was reversible for Pb, quasi-reversible for Cd, and kinetically controlled (possibly following chemical reaction) for Cu. The linearity of the response with concentration was verified up to approximately 4 microg L(-1) for Cd and Pb and approximately 20 microg L(-1) for Cu. The detection limits were 5.8 ng L(-1), 3.6 ng L(-1), and 4.3 ng L(-1) for Cd, Pb, and Cu, respectively, with t(d) = 5 min. The method was applied for determination of the metals in spicules of two specimens of marine sponges (Demosponges) from the Portofino natural reserve (Ligurian Sea, Italy, Petrosia ficiformis) and Terra Nova Bay (Ross Sea, Antarctica, Sphaerotylus antarcticus). The metal contents varied from tens of ng g(-1) to approximately 1 microg g(-1), depending on the metal considered and with significant differences between the two sponge species.  相似文献   

17.
建立连续光源原子吸收分光光度法同时测定磷酸一二钙(MDCP)中铅、镉的方法。MDCP经盐酸消解后,以氢氧化钠溶液调节p H为11,加入KCN作为掩蔽剂,用二乙氨荒酸钠–四氯化碳络合铅、镉离子,再经CCl_4进一步萃取浓缩,采用连续光源原子吸收分光光度法测定铅、镉的含量。该方法铅、镉的检出限为1,0.5 mg/kg;用于不同批次MDCP产品测定,铅、镉测定结果的相对标准偏差分别为3.58%,6.91%(n=11);铅、镉的加标回收率分别为88.9%~104.7%,91.0%~106.4%。该法可用于MDCP中痕量铅、镉的同时测定。  相似文献   

18.
Lead is quantitatively adsorbed as the lead N-methylethylxanthocarbamate (MEXC)-benzyldimethyltetradecylammonium (BDTA) ion pair complex on microcrystalline naphthalene in the pH range 4.0-11.0. The metal is desorbed with HCI and determined by differential pulse polarography. Alternatively lead can be quantitatively adsorbed on the adsorbent (MEXC-BDTA-naphthalene) packed in a column at a flow rate of 1-2 mL/min and determined similarly. Dissolved oxygen is removed by adding a few milliliters of 4% NaBH4 solution. The detection limit is 0.12 microg/mL at the minimum instrumental settings (signal-to-noise ratio, 2). Linearity was obtained over the concentration range 0.3-20.0 microg/mL with a correlation factor of 0.9998 and a relative standard deviation of +/- 0.98%. Various parameters, such as the effect of pH, volume of aqueous phase, flow rate, and the interference of a large number of metal ions and anions, were studied in detail to optimize the conditions for the trace determination of lead in various standard alloys, standard biological materials, and environmental samples.  相似文献   

19.
Bio-char by-products from fast wood/bark pyrolyses, were investigated as adsorbents for the removal of the toxic metals (As(3+), Cd(2+), Pb(2+)) from water. Oak bark, pine bark, oak wood, and pine wood chars were obtained from fast pyrolysis at 400 and 450 degrees C in an auger-fed reactor and characterized. A commercial activated carbon was also investigated for comparison. Chars were sieved (>600, 600-250, 250-177, 177-149, and <149 microm) and the particle size fraction from 600 to 250 microm was used without further modification for all studies unless otherwise stated. Sorption studies were performed at different temperatures, pHs, and solid to liquid ratios in the batch mode. Maximum adsorption occurred over a pH range 3-4 for arsenic and 4-5 for lead and cadmium. Kinetic studies yielded an optimum equilibrium time of 24 h with an adsorbent dose of 10 g/L and concentration approximately 100 mg/L for lead and cadmium. Sorption isotherms studies were conducted in broad concentration ranges (1-1000 ppb for arsenic, 1x10(-5)-5x10(-3) M for lead and cadmium). Oak bark out-performed the other chars and nearly mimicked Calgon F-400 adsorption for lead and cadmium. In an aqueous lead solution with initial concentration of 4.8x10(-4) M, both oak bark and Calgon F-400 (10 g/L) removed nearly 100% of the heavy metal. Oak bark (10 g/L) also removed about 70% of arsenic and 50% of cadmium from aqueous solutions. Varying temperatures (e.g., 5, 25, and 40 degrees C) were used to determine the effect of temperatures. The equilibrium data were modeled with the help of Langmuir and Freundlich equations. Overall, the data are well fitted with both the models, with a slight advantage for Langmuir model. The oak bark char's ability to remove Pb(II) and Cd(II) is remarkable when considered in terms of the amount of metal adsorbed per unit surface area (0.5157 mg/m(2) for Pb(II) and 0.213 mg/m(2) for Cd(II) versus that of commercial activated carbon.  相似文献   

20.
Human hair shavings were characterized as a sorbent for trace metals. At pH 7.0 metal sorption follows the order Pb(II)>Cd(II)>Cr(VI)>Fe(III)>Cu(II)>Ni(II)>Mn(VI). Metal recovery is quantitative for Pb and Cd after 30 min of equilibration. Recovery of other metals is less quantitative and varies with pH. For example, while Cu is best recovered at pH 5, Ni and Mn are sorbed optimally in the basic pH region. Sorbed metals can be washed off the sorbent with 0.5 mol L(-1) strong mineral acids or more completely with 0.1 mol L(-1) ethylenediaminetetraacetic acid (EDTA). Typical sorption isotherms were obtained for Cd and Pb with sorption capacities of 39 and 26 micromol g(-1), respectively.Hair sorbent was used for 40-fold pre-concentration of Cd and Pb from treated wastewater samples followed by flame atomic absorption spectroscopic (FAAS) determination. Comparison of the data obtained for lead and cadmium by the proposed pre-concentration method with that by graphite furnace atomic absorption spectroscopy (GFAAS) showed 79 to 86% recovery and comparable analytical precision. Common cations and anions at the levels normally present in natural water do not interfere in the proposed pre-concentration-FAAS method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号