首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murakami M  Takada T 《Talanta》1991,38(10):1129-1135
The extraction of copper(II) from strongly acidic solution (0.01-8M hydrochloric and 0.01-5M nitric acid) with ammonium 1-pyrrolidinecarbodithioate in di-isobutyl ketone has been studied. Compared with the hydrochloric acid system, a considerably larger amount of the reagent is needed for complete extraction of copper chelate from nitric acid solution as the extract is more unstable in the nitric acid system. The decomposition of copper chelates extracted from nitric acid is based on the oxidation of the reagent and the chelate; the spectral change of the extract from nitric acid suggests that the copper(II) chelate is initially oxidized to copper(II) and then decomposes. The upper limit of the acidity of both acids from which the copper chelate can be quantitatively extracted strongly depends on the reagent concentration; the limit with 8 x 10(-2)M APCD (500-fold reagent: metal molar ratio) was taken as 8 and 4M for hydrochloric and nitric acid, respectively.  相似文献   

2.
A new reagent, undecanoic acid N,N-diethylhydrazide, was synthesized, and its pK a1 was determined. The reagent recovers Cu(II) to 99–100% from solutions whose acidity ranges from pH 6 to 1 M NH3. Copper(II) is extracted in the form of a neutral complex of the composition Cu(II):reagent = 1:2. The reagent is incorporated in the complex in the deprotonated form. An equation for the extraction of Cu(II) from ammonia solutions was suggested. The extraction isotherm was constructred. Ammonium salts, when present in solution, considerably decrease the degree of copper extraction. The reagent is less efficient extractant of copper than N,N-diethylbenzhydrazide.  相似文献   

3.
Copper(II) extraction with 1-“[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]-methyl”-1H-1,2,4-triazole in toluene from hydrochloric acid solutions is studied. It is shown that copper(II) is most efficiently extracted with this reagent from 3–5 M HCl solutions. For aqueous acidity of 3 mol/L HCl, the extraction is an exothermal process and follows the coordination mechanism. The anion-exchange extraction mechanism predominates where HCl concentrations is greater than 6 mol/L. The studied reagent can be used for the selective separation of copper(II) from nickel(II) and cobalt(II) at aqueous acidities of up to 4 mol/L HCl.  相似文献   

4.
Palladium(II) extraction from hydrochloric acid solutions with a novel weakly basic complexing reagent, 4-[(hexylsulfanyl)methyl]-3,5-dimethyl-1H-pyrazole, dissolved in chloroform was studied. Palladium(II) was found to be highly efficiently extracted from 0.1–3 mol/L HCl solutions. A coordination mechanism of palladium(II) extraction with a protonated form of the reagent via fast interphase transfer of ion associates was proposed. The composition of the extracted compound, [PdCl2μ-L]n (n > 2), was found, and the way of coordination of the reagent to metal ions through N(2) nitrogen atom and thioether sulfur atom was determined. The reagent can be recommended for concentrating palladium(II) and selectively separating it from platinum(IV), copper(II), nickel(II), and iron(III).  相似文献   

5.
The solubility and acid-base properties of benzoic acid N,N-dihexylhydrazide (BDHH) were studied. The extraction of copper(II), cobalt(II), nickel(II), zinc(II), iron(III), platinum(II), platinum(IV), chromium(III), chromium(VI), palladium(II), and molybdenum(VI) with this reagent was studied. It was shown that BDHH most efficiently extracts copper(II) from ammonia solutions and chromium(VI) from sulfuric acid solutions. In the extraction of copper(II), complexes with the [Cu(II)]: [BDHH] = 1: 1 and 1: 2 stoichiometries were found to form. The structure of the 1: 2 complex was suggested proceeding from its IR spectra. A copper(II) extraction isotherm was plotted.  相似文献   

6.
Y. Zhao 《Chromatographia》2000,51(3-4):231-234
Summary A new chelating reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) has been examined for high performance liquid chromatographic (HPLC) separations of cobalt (II), copper(II) and iron (II) or cobalt (II), nickel (II), iron (II), copper (II) and mercury (II) as metal chelates on a C18, 5μm column (250×4 mm i.d.) The chelates were eluted isocratically with methanol: acetonitrile: water containing sodium acetate and tetrabutylammonium bromide (TBA), and detected at 254 nm. A solvent extraction procedure was developed for simultaneous determination of the metals with detection limits within 0.02–2.5 μ g.mL−1. The method was applied to the determination of copper, cobalt and iron in natural waters.  相似文献   

7.
Khuhawar MY  Lanjwani SN 《Talanta》1998,46(4):485-490
The complexing reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) was examined for high performance liquid chromatographic (HPLC) separations of cobalt(II), copper(II) and iron(II) or cobalt(II), nickel(II), iron(II), copper(II) and mercury(II) as metal chelates on a Microsorb C-18, 5-mum column (150x4.6 mm i.d.) (Rainin Instruments Woburn, MA, USA). The complexes were eluted isocratically with methanol:acetonitrile:water containing sodium acetate and tetrabutyl ammonium bromide (TBA). UV detection was at 254 nm. The solvent extraction procedure was developed for simultaneous determination of the metals, with detection limits within 0.5-2.5 mug ml(-1) in the final solution. The method was applied for the determination of copper, cobalt and iron in pharmaceutical preparation.  相似文献   

8.
A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L(-1) pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL(-1) of copper(II) and optimum range of 20-70 μg mL(-1) the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87×10(3) L mol(-1)c m(-1) and 0.072 μg cm(-2), respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method.  相似文献   

9.
    
The solvent extraction of cobalt(II), nickel(II) and copper(II) using 2,4-pent-dione (Hacac) and 4-phenyl-2, 4-but-dione (Hbzac) is carried out by varying the reagent concentration and pH of the aqueous phase. Each of these metals is quantitatively separated (≈ 98%) from their binary mixtures with monovalent (Ag), divalent (Mn, Zn, Cd, Hg, Mg, Sn, Pb) and trivalent (Cr, Fe) metals. The extraction constants are calculated from the metal distribution data using linear regression analysis. The extracted species is MA2 in each case. A most significant result is separation of copper(II) from iron(III) which otherwise interferes when extracted from the acidic medium.  相似文献   

10.
Mirza MY 《Talanta》1978,25(11-12):685-689
The extraction of Cu(II), Ga(III), In(III) and Tl(III) with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (HPMBzP) from aqueous solutions has been investigated. The mechanism of extraction and the composition of the species extracted has been determined. The effect of equilibration time, various organic solvents and salting-out agents on the extraction of copper and gallium has also been investigated. The green Cu(PMBzP)2 chelate has absorption maxima at 298 and 670 nm, and PMBzP has maximum absorbance at 290 nm. A new and sensitive spectrophotometric method for copper has been devised, based on the absorbance at 670 nm. The presence of excess of reagent does not interfere and no special treatment is necessary to destroy it. The proposed method has some advantages and has been applied for the determination of copper in various soil samples. Gallium has been separated from indium, thallium, copper, iron and many other elements. The recovery of gallium and copper was 100 ± 0.2%.  相似文献   

11.
Işıldak I  Asan A  Andaç M 《Talanta》1999,48(1):219-224
A simple spectrophotometric flow-injection method is reported for the highly sensitive and fast determination of copper(II). The method is based on the formation of coloured Cu(II)-(4-methylpiperidinedithiocarbamate)(2) complex when the copper solutions are introduced into a tertiary reagent stream containing 4-methylpiperidinedithiocarbamate. The coloured complex is then selectively monitored at 435 nm. To increase interactions between copper(II) and colour forming reagent and preconcentrate of copper(II), a microcolumn containing strong cation exchange resins was placed between injection manifold and spectrophotometer. The system required no mixing chamber and allowed a sample throughput >60 sample h(-1). The calibration graph was linear in the range 5-100 mug l(-1). The detection limit was <0.5 mug l(-1) for 20 mul injection volume of copper(II) ion solution. The developed method was applied to environmental, copper processing water, and ore samples.  相似文献   

12.
Palladium(II) extraction from nitric acid solutions with 1-{[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]-methyl}-1H-1,2,4-triazole in toluene is studied. The reagent efficiently extracts palladium(II) from 0.2–6 M HNO3 by a coordination mechanism yielding the complex Pd2(NO3)4 S 3 in the organic phase. The reagent can be used for selective separation of palladium(II) from nickel(II), copper(II), and iron(III) in the specified aqueous phase acidity range.  相似文献   

13.
Bandekar SV  Dhadke PM 《Talanta》1998,46(5):1181-1186
Solvent extraction of tin(IV) from hydrochloric acid media was carried out with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC-88A) in toluene. Tin(IV) was quantitatively extracted with 2.5x10(-2) M PC-88A in toluene from 0.1-0.3 M HCl when equilibrated for 5 min. Tin(IV) from the organic phase was stripped with 4 M HCl and determined spectrophotometrically by both the morin and pyrocatechol violet method. The nature of the extracted species was determined from the log-log plots. Various other diluents such as xylene, hexane and cyclohexane also gave quantitative extraction of tin. The metal loading capacity of the reagent was found to be 0-15 ppm of tin(IV). The extraction of tin(IV) was carried out in the presence of various ions to ascertain the tolerance limit of individual ions. Tin(IV) was successfully separated from commonly associated metal ions such as antimony(III), bismuth(III), lead(II), thallium(I), copper(II), nickel(II), etc. The method was extended for determination of tin in real samples.  相似文献   

14.
Extraction of Cu(II), Co(II), Ni(II), and Zn(II) with N-(para-tert-butylbenzoyl)-N??,N??-dialkylhydrazines was studied. In contrast to other listed elements, copper(II) is extracted with these reagents in a wide pH range and NH3 concentrations, which provides its selective separation. Effect of chain length of the N??,N??-alkyl groups and solvent nature on copper extraction and its stripping conditions were determined. Extraction constants were calculated. Ammonium salts decrease the extraction degree of copper(II). The studied reagents are superior to the known industrial reagent of ??-diketone class, LIX 54, in terms of copper(II) extraction efficiency from ammonia media.  相似文献   

15.
Arpadjan S  Mitewa M  Bontchev PR 《Talanta》1987,34(11):953-956
The nitrogen-containing analogue of 18-crown-6, 1,4,7,10,13,16-hexa-azaoctadecane (hexacyclen)] was studied as a reagent for complexation and extraction of some metal ions. It was found that with this reagent and methyl isobutyl ketone, metal ions such as silver(I), mercury(II), copper(II), platinum(II) and palladium(II) can be quantitatively extracted and separated from iron(III) and some other metal ions.  相似文献   

16.
2-(4-Toluenesulphonamido)aniline,TSA, was examined to evaluate the claim that it is a specific gravimetric reagent for copper(II) and to see if the application of the reagent could be extended. The nature of the reaction and complexes was investigated by potentiometry, solvent extraction, spectrophotometry, polarography and mass spectrometry. A 1:2 copper: TSA complex formed at pH 6 (K1=1019.11 in 50% (v/v) aqueous dioxane) is suitable for the gravimetric determination, as previously reported. A violet complex (λmax. 550 nm, ε=6620) of uncertain composition is formed at pH 10–11 and may be used for the spectrophotometric determination of copper. The centres of chelation have been deduced from the infrared spectra of the complex and reagent and the causes of the selectivity are discussed.  相似文献   

17.
In exploring selective extraction systems for use in environmental remediation or in metal scavenging agents for use in combinatorial chemistry, a novel reagent for the selective extraction of copper(II) has been developed. 2-Quinoxalinol salen ligands supported on an aminomethyl-polystyrene resin has been shown to efficiently and selectively extract copper(II) ions from organic solvents within 30 min under a variety of experimental conditions. Mild reducing conditions allow for metal ion recovery.  相似文献   

18.
Tait BK 《Talanta》1995,42(1):137-142
The use of two-phase potentiometric metal extraction titrations to study solvent extraction equilibria is described. The method provides a highly reproducible and convenient manner by which to determine extraction behaviour. The system was tested on a number of acidic extractants, namely D2EHPA, Ionquest 801, Cyanex 272, naphthenic acid and Versatic 10 acid. The extraction from an aqueous nitrate medium of silver(I), copper(II) and cadmium(II) was studied. The potentiometric data were used to obtain extraction curves and elucidate the nature of the extracted complexes by slope analysis and non-linear least squares treatment. In general, the following extraction order was obtained: D2EHPA > Ionquest 801 > Cyanex 272 and naphthenic > Versatic 10 for copper(II) and cadmium(II). Organophosphorus acids were shown to form complexes of the nature of Cu(HA(2))(2) with copper(II) and carboxylic acids formed dimeric complexes (CuA(2)(HA))(2). With cadmium octahedral complexes of the form CdA(2)(HA)(4) occurred. The extraction of silver(I) by Versatic 10 gave a dimeric complex (AgA(HA))(2). HA denotes the extractant in the acid form.  相似文献   

19.
Murti MV  Khopkar SM 《Talanta》1978,25(3):165-166
The copper(II)-thiobenzoylacetone complex, extracted into benzene, is used for photometric determination of copper at 410 nm after excess of reagent has been removed by scrubbing with a buffer at pH12. The extraction is quantitative over a broad pH range (3.5-9.5). The method is highly sensitive for the determination of copper.  相似文献   

20.
Murakami M  Takada T 《Talanta》1985,32(6):513-516
The extraction of copper(II) from strongly acidic solution (0.01-8M hydrochloric acid) with ammonium 1-pyrrolidinecarbodithioate in isobutyl methyl ketone has been investigated. The shaking time needed for quantitative extraction decreases as the acidity is increased. The effect of the mutual solubility of the organic solvent and the aqueous phase is significant when the acidity of the aqueous phase is increased. The acidity of the aqueous phase mainly affects the kinetic stability of the chelate during the shaking period, rather than the decomposition of the chelating agent. The kinetic stability of the chelate apparently depends on the mole ratio of reagent to copper, the half-lives for the chelate extracted from 4M hydrochloric acid being 29.0, 40.0 and 85.0 min for reagent: metal mole ratios of 10, 100 and 1000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号