首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods of in-vitro artificial formation of bilayer lipid membranes (BLM) and their analytical applications are reviewed, on the basis of 122 literature references. Different techniques for preparation of free-suspended planar BLMs, and gel-, filter-, and solid-supported systems are presented. The analytical applications developed are based on direct interaction of analytes with chemically unmodified BLMs, and with systems modified by use of redox mediators, ionophores, ion-channel forming species, enzymes, antibodies, or DNA.  相似文献   

2.
Formation of artificial lipid bilayers using droplet dielectrophoresis   总被引:1,自引:0,他引:1  
We describe the formation of artificial bilayer lipid membranes (BLMs) by the controlled, electrical manipulation of aqueous droplets immersed in a lipid-alkane solution. Droplet movement was generated using dielectrophoresis on planar microelectrodes covered in a thin insulator. Droplets, surrounded by lipid monolayers, were brought into contact and spontaneously formed a BLM. The method produced BLMs suitable for single-channel recording of membrane protein activity and the technique can be extended to create programmable BLM arrays and networks.  相似文献   

3.
An artificial cell membrane that is composed of bilayer lipid membranes (BLMs) with transmembrane proteins incorporated within them represents a well‐defined system for the analysis of membrane proteins, especially ion channel proteins that are major targets for drug design. Because the BLM system has a high compatibility with recently developed cell‐free expression systems, it has attracted attention as a next‐generation drug screening system. However, three issues associated with BLM systems, i. e., their instability, the need for non‐volatile organic solvents and a low efficiency of ion channel incorporation, have limited their use as a drug screening platform. In this personal account, we discuss our recent approaches to address these issues based on microfabrication. We also discuss the potential for using the BLM system combined with cell‐free expression systems as a drug screening system for future personalized medicine.  相似文献   

4.
A one-step method has been developed for incorporating ss DNA into a bilayer lipid membrane (BLM) on agar electrode, which displayed good responses to complementary ss DNA. The 5′-terminal phosphated end of ss DNA formed a phosphormidate bond with the amino group of N,N-diethylamidobenzene (NDAB) in the BLM forming solution. The method is easy to perform and has good reproducibility. Fourier transform infrared spectroscopy (FTIR) showed that the ss DNA was incorporated into the BLM.  相似文献   

5.
自组装ITO/双层磷脂膜的制备及其光电行为研究   总被引:3,自引:0,他引:3  
在ITO(Indium-tin-oxide)导电玻璃电极上制备上自组装双层磷脂膜和经C60修饰的双层磷脂膜,研究了这种自组装双层磷脂膜的光电行为,考察了偏压、溶液中的给体和受体的浓度对自组装膜光电流强度的影响,讨论了C60分子对光电子跨膜传递过程的促进作用。  相似文献   

6.
The variations in electrical conductivity and surface tension of planar bilayer lipid membranes (BLMs) sensitized by a haematoporphyrin dimethylether (HpDME) on visible light irradiation are reported. The irradiation of BLMs immediately leads to a decrease in membrane surface tension. On irradiation the conductivity of BLMs remains constant for a certain period of time (induction time), followed by an increase, terminated by membrane breakage. The induction time is not dependent on stirring of the solution, the addition of azide or ferricyanide to the solution, the addition of antioxidant to the lipid or substitution of air for argon in the cell. The induction time decreases for repeated irradiations or for any new BLM formed in the same cell immediately after the previous membrane has been broken. The conductivity shift consists of reversible and irreversible components. These results suggest that the irradiation of BLMs sensitized by HpDME leads to an accumulation of photoproducts in the membrane which induce pore formation and to a decrease in BLM stability when the concentration of the photoproducts exceeds a critical level.  相似文献   

7.
Rehak M  Hall EA 《The Analyst》2004,129(11):1014-1025
BLM prepared on electrode substrates by supporting or tethering were tested for 'pin-hole' character, comparing data from cyclic voltammetry (CV), surface plasmon resonance (SPR) and rotating disc electrodes (RDE). 1-hexadecylamine tethered BLMs on SAM modified gold electrodes were compared with BLMs assembled on modified polyHEMA or sol-gel layers. BLM formation followed by SPR showed that the initial phase of the assembly was complete in 5-20 minutes and produced layers of thickness >5 nm, compared with the expected final BLM thickness of approximately 3 nm. The CVs of the K(3)[Fe(CN)(6)] couple were significantly suppressed irrespective of the method of BLM assembly, without major differences emerging for the different methods. However, data from the RDE distinguished the 'pin-hole' character of the different preparations. The data were consistent with incomplete initial (<1 h, SPR estimated BLM thickness >5 nm) vesicle fusion leaving 'pin-holes' of approximately 2 microm (HDA-11-mercaptoundecanoic acid (MUA) tethered BLM) to approximately 3 microm (tetraethylorthosilicate sol-gel supported BLM) followed by a slow maturation (>15 h; impedance spectroscopy estimated thickness approximately 3 nm) and lateral spreading and fusion, resulting in loss of 'pin-hole' character (<1 microm). The BLM could be used in conjunction with potentiometric measurement to observe the incorporation of nystatin into the BLM and the rate of incorporation adjusted according to original permeability of the BLM. The 'pin-hole-free' BLM construction with lowest permeability (TEOS supported, 4 x 10(-10) cm s(-1) compared with HDA-MUA, 3 x 10(-9) cm s(-1)) gave a potentiometric signal independent of bulk ion-concentration across 5 decades change in concentration. Formed on an ion-selective electrode, nystatin incorporation could be followed as a change in potential, over >2 h, whereas the TEOS supported BLM with permeability 1 x 10(-9) cm s(-1) shows nystatin incorporation within 1 h. In this instance, addition of ConA reduced the potential to the same value as prior to nystatin incorporation, consistent with nystatin channel closure.  相似文献   

8.
Voltage-gated biological ion channels were simulated by insertion of the peptaibol antibiotic alamethicin into reconstituted phosphatidylcholine bilayer lipid membranes (BLMs). Scanning electrochemical microscopy (SECM) was utilized to probe initial BLM resistivity, the insertion of alamethicin pores, and mass transport across the membrane. Acquired SECM images show the spatial location of inserted pore bundles, the verification of voltage control over the pore conformational state (open/closed), and variations in passive mass transport corresponding to different topographical areas of the BLM. SECM images were also used to evaluate overall BLM integrity prior to insertion as well as transport (flux in open state) and leakage (flux in closed state) currents following insertion.  相似文献   

9.
采用循环伏安法研究了细胞色素C在月桂酸阴离子修饰的盐桥支撑双层类脂膜上的氧化还原反应;对盐桥支撑双层类脂膜的特性、细胞色素C的电化学反应动力学以及有关影响细胞色素C循环伏安行为各种因素进行了详细探讨;并对用该双层类脂膜体系电化学测定细胞色素C进行了初步尝试。  相似文献   

10.
The black lipid membranes (BLMs) are artificial membrane systems that have been widely used in the study of different biological processes. In this paper the planar bilayer lipid membranes have been used to study the behavior of thiolipid molecules-dipalmitoyl-phosphatidyl-ethanolamine-mercaptopropionamide (DPPE-MPA) and cholesteryl 3-mercaptopropionate (Chs-MPA)-as compared to classical BLM made of natural lipids. We present our experiments on black thiolipid bilayer (BTM) formation from a thiolipid solution and basic results of pump currents generated by sodium-potassium pump-Na(+),K(+)-ATP-ase-introduced to such bilayer systems via proteoliposome adsorption with subsequent fusion. Our results imply that no substantial difference exists between BLMs formed from classical lipids and those made from thiolipids used in this study. The same thiolipid molecules were subsequently used for the formation of covalently bound, tethered bilayer lipid membranes (t-BLMs) on polycrystalline gold electrodes. Similarly, as in the case of BLMs, we took advantage of proteoliposome adsorption/fusion to obtain a t-BLM system with reconstituted enzyme. The vesicle fusion on hydrophobic or hydrophilic substrates is one of the main ways to obtain a bilayer system with incorporated biological species. In this paper we present also our preliminary results of electrochemical experiments using rapid solution exchange technique on such t-BLMs systems and their comparison with painted solid supported membranes (SSMs) and BLMs. We have also followed the process of vesicles fusion onto thiolipid monolayer by means of in situ atomic force microscopy in tapping mode (TM-AFM). On the basis of these experiments, we conclude that DPPE-MPA and Chs-MPA molecules used in our experiments preserve lipid properties, allowing for at least partial reconstitution of Na(+),K(+)-ATP-ase into such t-BLMs. On the other hand, the relatively compact organization on polycrystalline gold and the hydrophobic nature of the first monolayer of tethered thiolipids slows down the proteoliposome fusion onto such monolayers and consequently hinders the protein insertion. However, this effect can be overcome by mechanical stimulus that facilitates proteoliposome delamination onto the self-assembled monolayer.  相似文献   

11.
Conventional bilayer lipid membranes (BLMs), formed by either the painting method or the Langmuir-Blodgett technique, lack the desired stability. This paper presents a simple method for forming long-lived BLMs on agar-gel supports. The supported BLM reported has a greatly improved mechanical stability and also has desirable dynamic properties. These self-assembled BLMs are of significant interest, in view of their similarity of biological membranes, their molecular dimension and their spontaneous formation.  相似文献   

12.
Fajkus M  Hianik T 《Talanta》2002,56(5):895-903
The method of electrostriction was applied to study the peculiarities of interaction of short oligonucleotides with free standing (BLM) and supported lipid membranes (sBLM) and of the duplex formation between complementary oligonucleotides on a membrane surface. The 15-mer single stranded DNA (pentadecathymidylate-(dT)(15)) was modified either with cholesterol (CH(dT)(15)) or by palmitoyl chain (C16(dT)(15)). The interaction of CH(dT)(15) with free standing BLM or with BLM formed on an agar or gold support was accompanied by sharp increase of elasticity modulus in direction perpendicular to the membrane plane ,E( perpendicular), and by increase of surface potential. In contrast, C16(dT)(15) did not induce substantial changes of elasticity modulus, however, the surface potential was changed in a similar manner as for CH(dT)(15). Hybridization of DNA following addition of complementary chain (dA)(15) has been accompanied by a small decrease of elasticity modulus and by a slight increase of surface potential. Both the incorporation of chemically modified oligonucleotides into the lipid bilayer as well as hybridization of DNA are not cooperative processes as has been demonstrated by analysis using Scatchard plot of corresponding values.  相似文献   

13.
胡劲波  李启隆  尚军 《中国化学》2002,20(3):267-271
IntroductionIonimplantationisakindofnewmaterialsurfacemodificationtechnique .Recently ,Lietal .1haveledthistechniqueintoanalyticalchemistryandmademodi fiedelectrodewithparticularfunction .Ithasbeenap pliedtostudytheelectrochemicalbehaviorsandthede terminat…  相似文献   

14.
The reduction of horse heart cytochrome c has been investigated at a platinum electrode modified with a lipid bilayer membrane (BLM) which immobilized vinyl ferrocene as an electron mediator. The current-voltage curves show that the direct electrochemistry of cytochrome c at the metal electrode occurs quite efficiently. An adsorption equilibrium constant for cytochrome at the BLM surface, as well as an electron transfer rate constant between the protein and the modified electrode have been estimated from these results. The values of both parameters are much higher than those reported with other types of electrode modifications, indicating that a lipid bilayer-modified platinum electrode system using vinyl ferrocene as a mediator provides substantial improvements in electrochemical activity of cytochrome c at metal electrodes. The potential for modifying and utilizing this new class of “biomembrane-like” electrode surface for metalloprotein electrochemistry is briefly discussed.  相似文献   

15.
The reduction of horse heart cytochrome c has been investigated at a platinum electrode modified with a lipid bilayer membrane (BLM) which immobilized vinyl ferrocene as an electron mediator. The current—voltage curves show that the direct electrochemistry of cytochrome c at the metal electrode occurs quite efficiently. An adsorption equilibrium constant for cytochrome at the BLM surface, as well as an electron transfer rate constant between the protein and the modified electrode have been estimated from these results. The values of both parameters are much higher than those reported with other types of electrode modifications, indicating that a lipid bilayer-modified platinum electrode system using vinyl ferrocene as a mediator provides substantial improvements in electrochemical activity of cytochrome c at metal electrodes. The potential for modifying and utilizing this new class of “biomembrane-like” electrode surface for metalloprotein electrochemistry is briefly discussed.  相似文献   

16.
We describe a system that provides a rapid and simple way of forming suspended lipid bilayers within a microfluidic platform from an aqueous droplet. Bilayer lipid membranes are created in a polymeric device by contacting monolayers formed at a two-phase liquid–liquid interface. Microdroplets, containing membrane proteins, are injected onto an electrode positioned above an aperture machined through a conical cavity that is filled with a lipid–alkane solution. The formation of the BLM depends solely on the device geometry and leads to spontaneous formation of lipid bilayers simply by dispensing droplets of buffer. When an aqueous droplet containing transmembrane proteins or proteoliposomes is injected, straightforward electrophysiology measurements are possible. This method is suitable for incorporation into lab-on-a-chip devices and allows for buffer exchange and electrical measurements.
Figure
Bilayer lipid membranes are formed in a polymeric device by injecting water droplets, containing membrane proteins, directly onto an electrode positioned above an aperture machined into a conical cavity, which is initially filled with a lipid-alkane solution. The water droplet slides down the electrode to the aperture at the bottom of the conical reservoir. The geometry of this system enables the spontaneous formation of a BLM. Ion channel activity is recorded between an electrode in the bottom channel and the electrode in the droplet. The technique is scalable and could be configured as a high throughput multi-site biosensing or drug screening platform.  相似文献   

17.
The lipid bilayer postulated as the basic structural matrix of biological membranes is widely accepted. At present, the planar bilayer lipid membrane (BLM) together with spherical lipid bilayers (liposomes), upon suitable modification, serves as a most appropriate model for biological membranes. In recent years, advances in microelectronics and interest in ultrathin organic films, including BLMs and Langmuir-Blodgett (L-B) films, have resulted in a unique fusion of ideas toward the development of biosensors and transducers. Furthermore, recent trends in interdisciplinary studies in chemistry, electronics, and biology have led to a new field of research: biomolecular electronics. This exciting new field of scientific-technological endeavor is part of a more general approach toward the development of a new, post-semiconductor electronic technology, namely, molecular electronics with a long-term goal of molecular computers.

Recently, it has been demonstrated that BLMs, after suitable modification, can function as electrodes and exhibit nonlinear electronic properties. These and other experimental findings relevant to sensor development and to “biomolecular electronic devices” (BED) will be described in more details in the present review article. Also the potential use of the BLM system together with its modifications in the development of a new class of organic diodes, switches, biosensors, electrochemical photocells, and biofuel cells will be discussed. Additionally, this paper reports also a novel technique for obtaining BLMs (or lipid bilayers) on solid supports. The presence of solid support on one side of the BLM greatly enhances its mechanical stability, while retaining the dynamic properties of the lipid bilayer. Advantages of the new techniques for self-assembling amphiphilic molecules on rigid substrates are discussed in terms of their possible uses. It is evident that the new BLM system (s-BLMs) is potentially useful for technological applications in the area of biosensors and enzyme electrodes as well as molecular electronics.  相似文献   


18.
The stabilization of suspended planar lipid membranes, or black lipid membranes (BLMs), through polymerization of mono- and bis-functionalized dienoyl lipids was investigated. Electrical properties, including capacitance, conductance, and dielectric breakdown voltage, were determined for BLMs composed of mono-DenPC, bis-DenPC, mono-SorbPC, and bis-SorbPC both prior to and following photopolymerization, with diphytanoyl phosphocholine (DPhPC) serving as a control. Poly(lipid) BLMs exhibited significantly longer lifetimes and increased the stability of air-water transfers. BLM stability followed the order bis-DenPC > mono-DenPC ≈ mono-SorbPC > bis-SorbPC. The conductance of bis-SorbPC BLMs was significantly higher than that of the other lipids, which is attributed to a high density of hydrophilic pores, resulting in relatively unstable membranes. The use of poly(lipid) BLMs as matrices for supporting the activity of an ion channel protein (IC) was explored using α-hemolysin (α-HL), a model IC. Characteristic i-V plots of α-HL were maintained following photopolymerization of bis-DenPC, mono-DenPC, and mono-SorbPC, demonstrating the utility of these materials for preparing more durable BLMs for single-channel recordings of reconstituted ICs.  相似文献   

19.
This paper reports a new type of bilayer lipid membrane (BLM) with aqueous interfaces which are formed from thermotropic liquid crystals (nematic-6CB, smectic-8CB, and cholesteric-cholesteryl palmitate, ChP). The electrical properties of these unmodified membranes have been investigated. We suggest that BLMs of this type in their 'black' states consist of two molecular layers with a smectic-like structure.  相似文献   

20.
A simple method is described to reconstitute membrane receptors into bilayer lipid membranes (BLMs). After reconstitution, the receptor still retains its ligand activity. Furthermore, the relationship between receptor–ligand interactions and electrical properties of reconstituted BLMs such as membrane capacitance (Cm) and membrane resistance (Rm) was studied. When glycophorin in erythrocyte and asialoglycoprotein in hepatocyte were taken as examples, it was found that the resistance of reconstituted BLM decreased when adding blood type monoclonal antibody or the solutions of galactose, respectively, and the decrease is ligand-concentration dependent; however, the membrane capacitance was not influenced. This provides a simple, practical approach to determining the interactions between the receptor and its ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号