首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption studies provide valuable information about the interactions of the components of the liquid mixture with the polymer. In the present paper, the behaviour of Nafion and low-density polyethylene membranes in binary mixtures benzene + methanol was examined with respect to their application in separation processes. The individual sorption isotherms, the separation factors, and the composition of the swollen membranes were derived from the experimental data. The results confirm that Nafion as a polar material sorbs the more polar component of the mixture (methanol) preferentially to the less polar component (benzene) whereas non-polar polyethylene prefers non-polar benzene in the whole concentration range. Volume measurements of the swollen membranes indicate that the ideal sorption behaviour cannot be considered for the selected systems.  相似文献   

2.
Gaseous samples of fresh tobacco smoke were injected on to a packed polar column (2,2-oxydipropionitrile) in all-glass chromatographic system. With the aid of a warm syringe, selected fractions were withdrawn from the bottom of the electron capture detector of the packed column for further injection into an efficient non-polar glass capillary column (SF-96), connectable on-line to a mass spectrometer. The method has permitted the separation and identification of some polar and non-polar components of tobacco smoke, which gave previously mixed, broad, tailing peaks when the smoke was injected directly into a non-polar capillary column.  相似文献   

3.
Summary Several poly(3,3,3-methyltrifluoropropyl siloxane) stationary phases with a low percentage of trifluoropropyl have been recharacterised by means of activity coefficients at temperatures in the range 60–140°C. The temperature effect of activity coefficients was studied. Thermodynamic magnitudes: excess Gibbs energy, excess enthalpy and excess entropy for 44 solutes on these polymers were calculated, and their relationships with solutes’ molecular connectivity indexes were tested. Solute-polymer interactions were calculated at 120°C according to the solvation parameter model, and several correlations for selected solutes and polymers were investigated, mainly the effect of solutes’ structure on the non-polar interactions and the effect of the solute dipole moment on the polar interactions. In addition, the influence of polymer polarity on the different polar and non-polar interactions was investigated.  相似文献   

4.
Jahangk LM  Olsson L  Samuelson O 《Talanta》1975,22(12):973-978
Complex mixtures of aromatic compounds can be rapidly separated on anion-exchangers in the acetate form with acetic acid as eluent and determined automatically by recording the absorbance in the ultraviolet. Carboxylates are separated by ion-exchange. Hydrogen bonds between non-disso-ciated acids and the counter-ions influence the distribution coefficients. Hydrogen-bonding with the resin has a marked effect on the sorption of solutes containing phenolic protons. Intramolecular hydrogen-bonding depresses their sorption. Hydrophobic interactions have a predominant influence with hydrocarbons and with phenolic compounds containing non-polar aliphatic substituents. The relative importance of these interactions increases with a decreased ion-exchange capacity of the resin.  相似文献   

5.
Lima LR  Synovec RE 《Talanta》1994,41(4):581-588
Molecular species of phosphatidylcholine, phosphatidylethanolamine and phosphatadic acid were resolved by isocratic reversed phase high performance liquid chromatography (HPLC) using mobile phases of methanol-isopropanol containing para-toluenesulfonic acid (p-tsa). Separation by both non-polar fatty acid chain length and by polar head group functionality was achieved concurrently upon a commercially available octadecylsilane (C18) column endcapped with trimethylsilane (C1) groups. Using a mobile phase of 97.5:2.5 methanol:isopropanol with 7OmMpara-toluenesulfonic acid (p-tsa) at a pH of approximately 1, twelve phospholipid species comprised of four tail group classes (dilauroyl-,dimyristoyl-, dipamitoyl- and distearoyl-) and three head group speciations (phosphatidylcholine, phosphatidylethanolamine and phosphatadic acid) were separated. The column was then exposed to the acidic mobile phase for 48 hours continuously during which the bound phase underwent severe acid-induced hydrolysis, after which the separation of the twelve analytes resulted in the separation of the phospholipid species by non-polar tail group alone. The experimental results are discussed in terms of potential separation mechanisms including dependency of the separation on adsorption of the counter ion into the stationary phase, residual acidic silanol group interactions, and potential interactions of the surface active phospholipids with C1 groups.  相似文献   

6.
The influence of humic substances on sorption and methylation processes for inorganic- and organotin species is presented. Four sediment samples from different locations of the Rivers Elbe, Mulde and Spittelwasser, Germany, with different organotin and humic contents were selected to extract the humic and fulvic acids. The various fractions—the original sediment, the humic acid, the fulvic acid and the residual sediment—were analysed for their organotin content. The individual buyltin species show quite different distribution patterns. Monobutyltin is found mostly associated with humic acids. Dibutyltin shows a nonunique behaviour. At low total organotin content, dibutyltin is found bonded to humic and fulvic acids, whereas at high organotin content dibutyltin is distributed more with the residual sediment. Most of the tributyltin remains in the sediment unextracted; only small quantities of it are in the fulvic acid fraction. Tetrabutyltin is only in the humic acid fraction when it binds to humic matter; it mostly remains in the sediment. General observations indicate that ionic butyltin species bind to fulvic acids whereas the non-polar tetrabutyltin is not found in the fulvic acid fractions in any of the samples. The appearance of monomethyl- and dimethyl-tin species in the humic and fulvic acid fractions after the alkaline extraction was surprising. There is a correlation between the humic content of the sample and the formation of methyltin species. Evidence is provided by experiments that humic substances act as methylation agents.  相似文献   

7.
As one of approaches of developing novel HPLC stationary phases, we prepared Cu-octabromotetrakis(4-carboxyphenyl)porphine derivative-immobilized silica gels (Cu-OBTCPP(D)), and evaluated the availability of the resultant Cu-OBTCPP(D) as a stationary phase for separation of poly-aromatic-hydrocarbons (PAHs) and their related compounds. A Cu-OBTCPP(D) column was revealed to have an ability to separate simple PAHs and be useful as a stationary phase in both polar and non-polar eluents. The retention property of the Cu-OBTCPP(D) column was evaluated in various comparative experiments using commercially available columns. In comparison with 2-(1-pyrenyl)ethyl dimetylsilyl silica gel column (PYE column) regarding the retention behavior for PAHs etc., the Cu-OBTCPP(D) column showed stronger interactions involving pi electron in non-polar eluent than PYE column. In comparison with a pentabromobenzyloxy propylsilyl silica gel column (PBB column) regarding the influence of bromination, the Cu-OBTCPP(D) column was affected differently from the PBB column. In comparison with nitrophenylethyl silica gel column (NPE column) regarding the retention behavior for compounds having a dipole in a non-polar eluent, the Cu-OBTCPP(D) column showed electrostatic interactions such as dipole-dipole interaction equivalent to or larger than the NPE column.  相似文献   

8.
Summary Fourier-transform infrared spectrometry (FTIR) was utilized as a detection system for high-performance liquid chromatography of polar compounds on a normal bonded-phase system. In addition to FTIR, UV (254 nm) and refractive index detection were employed in the separation of model compounds containing oxygen and nitrogen atoms in their molecules (phenols, alcohols, neutral and weakly basic nitrogen compounds). A polar amino-cyano (PAC) bonded-phase column was employed with a binary mobile phase (98:2 CDCl3:CH3CN). The separations and the information gained from each detector is discussed, including interactions between sample material and mobile phase. A polar fraction of a coal-derived product is also chromatographed under identical conditions. The results based on FTIR detection and chromatographic retention behavior suggest the exclusive presence of hindered and unhindered phenols.  相似文献   

9.
The subsurface sorption of Suwannee River fulvic acid (SRFA) and humic acid (SRHA) onto a synthetic aquifer material (iron-oxide-coated quartz) and two natural aquifer materials (Ringold sediment and Bemidji soils) was studied in both batch and column experiments. The hypothesis that hydrophobic effects followed by ligand exchange are the dominant mechanism contributing to the chemical sorption happening between dissolved natural organic matter (NOM) and the mineral surfaces is supported by observations of several phenomena: nonlinear isotherms, faster sorption rates versus slower desorption rates, phosphate competition, a solution pH increase during NOM sorption, and functional groups and aromaticity-related sorption. In addition, high-pressure size exclusion chromatography (HPSEC) and carboxylic acidity showed that lower molecular weight NOM components of SRHA are preferentially sorbed to iron oxide, a result in contrast to that for SRFA. Phosphate increased the desorption of sorbed NOM as well as soil organic matter. All of these trends support ligand exchange as the dominant reaction between NOM and the iron oxide surfaces; however, if the soil surface has been occupied by soil organic matter, then the sorption of NOM is more due to hydrophobic effect.  相似文献   

10.
Humic substances are natural complexed mixtures of organic compounds originated from the decomposition of plant and animal residues. These compounds are ubiquitous in soils, sediments, surface waters and groundwaters. They contain both hydrophobic and hydrophilic moieties, able to interact with hydrophobic organic contaminants and with heavy metals. These sorption interactions play a crucial role in contaminants fate and transport and their understanding and quantification are essential for modeling and predictions. However, sorption analyses frequently suffer from experimental problems. A novel idea presented in this study is to use sol-gel as an inert matrix to immobilize (entrap) specific, well defined, humic molecules which then be used in sorption studies. We developed a successful procedure for the immobilization of humic acid (HA) in a sol-gel matrix. After gelation and drying, the doped gel was crushed and washed several times, yielding a very stable product. It was then used in a series of batch experiments, studying the sorption of several polycyclic aromatic hydrocarbons (PAHs) with Aldrich HA. The sorption coefficients (K oc) obtained with the immobilized HA were highly correlated with the values expected based on the hydrophobicity of the contaminants. We concluded that the entrapped HA retained its original properties and that it was accessible to the external contaminants through the pore network.  相似文献   

11.
Erny GL  Calisto V  Lima DL  Esteves VI 《Talanta》2011,84(2):424-429
The strength of the interaction between a pesticide and the soil organic matter is a key parameter to assess the risk of it reaching to groundwater with potentially harmful effects to human health. In this work, a new approach that allows measuring such interactions in a few minutes using a purified fraction of the soil organic matter (humic substances) is detailed. The strength of sorption is assessed via the normalised difference of elution (retention factor, k′) between the chemical of interest and a neutral marker transported via electroosmotic flow through an open tubular column supporting the immobilised humic substances (open tubular capillary electrochromatography). The immobilisation was achieved by incubating a capillary, pre-coated with a monolayer of humic acid, with an acidic solution of humic substances. This induces the formation of a supramolecular structure of humic substances as it occurs in soils. This aggregate can easily be removed using alkaline solutions, and a new structure assembled using other humic substances (HS) or different incubations conditions. The whole procedure takes 2 h. This approach has been tested using five triazines and three types of humic substances. The order of the strength of sorption of the triazines as expected from relevant literature and the relative standard deviation of k′ was between 1 and 6%. Good repeatability was also observed after long period of wash, between re-coating and repeating of the full coating with a new capillary.  相似文献   

12.
Humic acid (HA) which originated from Leonardite was purified and immobilized onto aminoprophyl silica (APS). Afterwards, the remaining amino groups on the silica are successfully end-capped using acetic anhydride in DMF media and this material was used for Cu(II) ions removal from aqueous solution by using continuously solid phase extraction (SPE) technique in a column arrangement. The sorption characteristics of Cu(II)-immobilized humic acid (ImHA) system were investigated at various experimental conditions, and output was observed by a UV detector. All solid phase extraction (SPE) steps were monitored through breakthrough curves used to visualize distribution of Cu(II) concentration between mobile phase and solid phase. In addition to this, the solutions collected from stripping steps were analyzed in atomic absorption spectrophotometry (AAS) and the amount of adsorbed Cu(II) ions was calculated. It was found that there was a high correlation (R2 = 1) between the peak area and AAS data of stripping steps. Sorption characteristics were evaluated by using Freundlich, Langmuir, and Dubinin–Radushkevich (D-R) adsorption isotherms, as well as by Scatchard plot analysis. Thus, the sorption characteristics and usability of ImHA as a solid phase for SPE of Cu(II) ions was evaluated in detail. From the obtained results, it was seen that sorption mechanism of Cu(II) fits to Langmuir model on a large scale, sorption was thought to be localized. From D-R isotherm mean free energy of sorption (E) was calculated (17.68 kJ mol−1), and it was deduced that chemical interactions were more effective than physical interactions for Cu(II). This investigation provides a new, environmentally friendly and cost-effective possibility to remove Cu(II) ions from aqueous solution by using the new APS-ImHA material.  相似文献   

13.
A method to separate FAME and the linoleic and linolenic acids isomers by GCxGC using an apparatus equipped with a capillary flow technology (CFT) based modulator and a FID detector has been developed. Four different column combinations (one conventional and three inverted phase sets) were used in these experiments. The conventional set first involved a DB5-MS non-polar column followed by a highly polar HP-INNOWax column in the second dimension. The inverted phase set comprised of a highly polar BPX-70 column in the first dimension and a non-polar ZB5-MS column for the second dimension. Furthermore, the influence of the length of the second dimension column on FAME isomer separation was studied in the inverted phase sets, along with other parameters like the modulation time and column flow. The best results in terms of the time required for the analysis and number of FAME identified with the inverted set were achieved with the shorter second dimension column. After supercritical fluid extraction, the method was applied to identify FAMEs in broccoli leaves from three different cultivars (Naxos, Nubia and Viola).  相似文献   

14.
Abstract

The sorption of tefluthrin was studied on “pure” clay minerals and those that had been coated with aquatic humic substances over a mass percent carbon range of 0.02 to 2.15. Tefluthrin sorption onto humic-coated minerals was significantly greater than on to the clean minerals and increased with increasing quantities of sorbed humic substances. Humic acid, the most aromatic coating, was the strongest sorbent, followed by fulvic acid, hydrophilic macromolecular acid and natural coatings on estuarine suspended particles. This shows the significant impact of humic coatings on the sorptive capacity of mineral particles. The sorption was linear, also consistent with the operation of a partition process. The partition coefficient normalised to organic carbon (Koc) after deduction of the contribution from the clean mineral, ranged from 120000 to 770000 and was highest for the most aromatic humic acid fraction.  相似文献   

15.
A kinetic study of Aldrich humic acid sorption onto a quartz sand surface has revealed an initial rapid uptake of humic acid molecules followed by a much slower sorption. The humic acid molecular weight and chemical fractionation resulting from adsorption onto the simple quartz sand surface were investigated for the two kinetic steps by coupled asymmetric flow-field flow fractionation-UV/visible absorption spectrophotometry. The molecular weight distribution of residual humic acid in solution after adsorption deviated from the original molecular weight distribution, showing preferential adsorption of certain molecular weight components. This fractionation is different after the two kinetic steps. Humic acid molecules characterised by a molecular weight below 4800 Da and with a weight-average molecular weight (M(w)) of 1450 Da were adsorbed after the fast kinetic step, whereas humic acid molecules in the molecular weight range 1400-9200 Da and of M(w) 3700 Da were adsorbed after the slower uptake. Therefore, the adsorption of low molecular weight humic components takes place initially, and is then followed by the adsorption of higher molecular weight components. Chemical adsorptive fractionation, investigated by studying the 253 nm/203 nm absorbance ratio over time, shows that aromatic components are preferentially adsorbed during the fast kinetic step. The fractionation pattern may be explained by the physicochemical characteristics of the Aldrich humic acid and the underlying sorption processes. The trend for the sorption kinetics of europium onto the quartz sand surface in the presence of humic acid is similar to that of the humic acid itself.  相似文献   

16.
M. Hanson 《Chromatographia》1994,39(7-8):431-437
Summary Pressure/temperature variation in SFC was shown to influence selectivity towards steroids. Major changes were observed for polar column packings compared to non-polar packings and variation of the amount of modifier showed that this is valid over the whole investigated range. The effect is underlined by a fall in resolution in the low density range (low pressure/high temperature) for polar stationary phases and appears to be significantly larger than for non-polar phases. Major selectivity shifts induced by variation of the physical properties of the mobile phase are considered to be due to the greater effect of polar modifiers on the nature of polar stationary phases than on non-polar phases.  相似文献   

17.
The solubility of diphenylamine, phenyl benzoate and diphenyl methane in high-density polyethylene and various polyamides has been studied as a function of oxidation and of sample annealing.

Oxidative destruction of topological structures forming the non-polar sorption centers and accumulation of new-formed polar groups, participating in sorption of polar compounds, result in complicated dependencies of solubility upon oxidation, in some cases showing minima.  相似文献   


18.
Different kinds of clay minerals have been studied extensively in the removal of radionuclides from large volumes of aqueous solutions because of their high sorption capacity. Herein, the Na-montmorillonite was characterized by using XRD and FTIR in detail. The sorption of 63Ni(II) from aqueous solution to montmorillonite as a function of pH, ionic strength, foreign ions, humic substances and temperature was studied by batch technique. The sorption of 63Ni(II) on montmorillonite achieved equilibration quickly. The sorption of 63Ni(II) to montmorillonite was strongly dependent on pH, and dependent on ionic strength at low pH and independent of ionic strength at high pH values. The sorption of 63Ni(II) on montmorillonite was enhanced at low pH in the presence of humic acid (HA), while a negative effect of HA on 63Ni(II) sorption was found at high pH values. At low pH values, the sorption of 63Ni(II) was attributed to outer-sphere surface complexation or ion exchange, whereas the sorption was dominated by inner-sphere surface complexation at high pH values. The montmorillonite sample is a suitable material in the preconcentration of radionuclides from large volumes and the material can be used as backfill material in nuclear waste repository.  相似文献   

19.
We have developed further a chromatographic model for studying the hydrophobic interactions which characterize the way a ligand binds to its receptor. This model is based on observing the retention behaviour of de novo designed model 18-residue amphipathic alpha-helical peptides (representing the hydrophobic binding domain of a ligand) on reversed-phase packings by varying hydrophobicity (representing a receptor protein with a hydrophobic binding pocket). Mutants of the "native" peptide ligand (which contains seven Leu residues in its non-polar face) were designed by replacing one residue in the center of the extremely non-polar face of the amphipathic alpha-helix. Through reversed-phase liquid chromatography of these peptides at pH 2.0 on cyano and C18 columns, we have demonstrated how an increase in receptor hydrophobicity (represented by an increase in column stationary phase hydrophobicity; cyano --> C18) significantly enhances hydrophilicity of polar amino acid side-chains at the ligand-receptor interface while moderately enhancing the hydrophobicity of non-polar side-chains. The addition of salt (100 mM sodium perchlorate) to the aqueous environment surrounding the binding site of receptor and ligand was also shown to have a profound effect on side-chain hydrophilicity/hydrophobicity in the binding interface. This effect was particularly dramatic for the positively charged side-chains Arg, Lys and His, whose significant enhancement of hydrophobicity in the presence of the cyano column contrasted with their increase in hydrophilicity in the presence of the considerably more hydrophobic C18 stationary phase. Our results have major implications to understanding the influence of hydrophobic and aqueous environment on hydrophilicity/hydrophobicity of amino acid side-chains and the role side-chains play in the folding and stability of proteins.  相似文献   

20.
Cyclodextrin-modified graphene oxide nanosheets (denoted as CD/GO) were synthesized by an in-situ polymerization method and characterized by as well as Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and potentiometric acid-base titration. The characterization results indicated that CD was successfully grafted onto GO surfaces by forming a chemical bond. Mutual effects on the simultaneous removal of hexavalent uranium and humic acid by CD/GO from aqueous solution were investigated. The results indicated that U(VI) and humic acid (HA) sorption on CD/GO were greatly affected by pH and ionic strength. The presence of HA enhanced U(VI) sorption at low pH and reduced U(VI) sorption at high pH, whereas the presence of U(VI) enhanced HA sorption. The surface adsorbed HA acted as a “bridge” between U(VI) and CD/GO, and formed strong inner-sphere surface complexes with U(VI). Sorption isotherms of U(VI) or HA on CD/GO could be well fitted by the Langmuir model. This work highlights that CD/GO can be used as a promising material in the enrichment of U(VI) and HA from wastewater in U(VI) and humic substances obtained by environmental pollution cleanup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号