首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou CL  Lu Y  Li XL  Luo CN  Zhang ZW  You JM 《Talanta》1998,46(6):1531-1536
A new method is described for the determination of antimony based on the cathodic adsorptive stripping of Sb(III) complexed with 2′,3,4′,5,7-pentahydroxyflavone(morin) at a static mercury drop electrode (SMDE). The reduction current of the adsorbed antimony complex was measured by 1.5th-order derivative linear-sweep adsorption voltammetry. The peak potential is at −0.51 V (vs. SCE). The effects of various parameters on the response are discussed. The optimized analytical conditions were found to be: supporting electrolyte, chloroacetic acid (0.04 mol/l, pH 2.3); concentration of morin, 5×10−6 mol/l; accumulation potential, −0.25 V (vs. SCE); scan rate, 100 mV/s. The limit of detection and the linear range were 7×10−10 mol/l and 1.0×10−93.0×10−7 mol/l Sb(III) for a 2-min accumulation time, respectively. This method has been applied to the determination of Sb(III) in steel and brass samples and satisfactory results were obtained. The adsorptive voltammetric characteristics and composition of the Sb(III)–morin complex were studied.  相似文献   

2.
Square wave adsorptive voltammetric determination of sunset yellow   总被引:1,自引:0,他引:1  
Nevado JJ  Flores JR  Llerena MJ 《Talanta》1997,44(3):467-474
Square wave adsorptive stripping voltammetry was used for determining trace amounts of dye Sunset Yellow (E-110) for the first time. Its adsorptive voltammetric behaviour followed by a square wave mode step was investigated at different pH media. Sunset Yellow in 0.5 M NH (4)Cl NH (3) buffer solution gave an adsorptive stripping voltammetric peak at the hanging mercury drop electrode at -0.60 V using an accumulation potential of -0.40 V. The effect of experimental parameters that affected this determination are discussed. The calibration graph to determine Sunset Yellow was linear in the range 5-90 mug 1(-1), obtaining a relative standard deviation of 2.2% for a solution of 30 mug 1(-1) (n = 10) in the same day. The determination limit was 5 mug 1(-1) after 15 s of accumulation at -0.40 V. The proposed method was applied to determine this dye in several commercial refreshing drinks, which contained small amounts of this compound. Measurements were made directly over diluted solutions of commercial samples. Similar results were obtained between adsorptive stripping square-wave voltammetric values and the obtained by application of a HPLC method with spectrophotometric detection.  相似文献   

3.
Anodic stripping voltammetry (a.s.v.) ata mercury film on a glassy carbon working electrode was utilized to determine the amount of antimony from hand swabs. The procedure described is useful for determining 10–120 ng of antimony found in the residue ou the hands of an individual suspected of discharging or handling a firearm. The voltammogram provides an elemental pattern recognizable as gunshot residue containing small amounts of antimony and much larger amounts of copper and lead. The amount of antimony in a variety of gunshot-residue samples was determined by both anodic stripping voltammetry and graphite-furnace atomic absorptiou spectrometry for comparison purposes. Anodic stripping voltammetry is excellent for observation of the multielement pattern which proves to be very useful for gunshot-residue samples.  相似文献   

4.
Electrochemical studies of famotidine were carried out using voltammetric techniques: cyclic voltammetry, linear sweep and square wave adsorptive stripping voltammetry. The dependence of the current on pH, buffer concentration, nature of the buffer, and scan rate was investigated. The best results for the determination of famotidine were obtained in MOPS buffer solution at pH 6.7. This electroanalytical procedure enabled to determine famotidine in the concentration range 1 × 10−9–4 × 10−8 mol L−1 by linear sweep adsorptive stripping voltammetry (LS AdSV) and 5 × 10−10–6 × 10−8 mol L−1 by square wave adsorptive stripping voltammetry (SW AdSV). Repeatability, precision and accuracy of the developed methods were checked. The detection and quantification limits were found to be 1.8 × 10−10 and 6.2 × 10−10 mol L−1 for LS AdSV and 4.9 × 10−11 and 1.6 × 10−10 mol L−1 for SW AdSV, respectively. The method was applied for the determination of famotidine in urine.  相似文献   

5.
The square-wave voltammetric technique was used to explore the adsorption properties of the astemizole drug. The analytical methodology used was based on the adsorptive preconcentration of the drug on a hanging mercury drop electrode (HMDE), followed by the electrochemical reduction process which yielded a well-defined cathodic peak at −1.184 V (vs. the Ag/AgCl electrode). To achieve high sensitivity, various experimental and instrumental variables were investigated such as the supporting electrolyte, pH, accumulation time and potential, drug concentration, scan rate, SW frequency, pulse amplitude, convection rate, and the working electrode area. Under the optimized conditions, the AdSV peak current was proportional over the analyte concentration range of 5 × 10−7 to 2.5 × 10−6 mol L−1 (r = 0.998) with the detection limit of 1.4 × 10−8 mol L−1 (6.4 ng mL−1). The precision of the proposed method in terms of RSD was 2.4 %, whereas the method accuracy was indicated by the mean recovery of 100.1 %. Possible interferences of several substances usually present in the pharmaceutical tablets and formulations were also evaluated. The applicability of this electroanalytic approach was illustrated by the determination of astemizole in tablets and biological fluids.  相似文献   

6.
7.
在0.40 mol/L的NaAc-HAc(pH 4.5)缓冲液中,使用JP-303极谱分析仪,依诺沙星在碳糊电极(CPE)上有一灵敏的吸附伏安氧化峰,峰电位为1.17 V(vs.SCE).该氧化峰的二阶导数峰电流与依诺沙星的浓度在4.0×10-9~4.0×10-7 mol/L(富集90 s)范围内呈良好的线性关系,相关系数为0.995,检出限为2.0×10-9 mol/L(S/N=3,富集110 s).探讨了依诺沙星在碳糊电极上的伏安性质和电极反应机理,并且用于诺佳胶囊中依诺沙星的测定.  相似文献   

8.
9.
The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer.  相似文献   

10.
Summary The catalytic adsorptive stripping voltammetric determination of chromium using diethylenetriaminepentaacetic acid (DTPA) is only possible when chromium(III) is preliminarily oxidized to chromium(VI) which can be accomplished by UV-irradiation of the oxygen saturated solution at pH 6.0–7.0. A chromium(III)-chromium(VI) speciation can be performed in the range 10–10 mol/l upto 10–6 mol/l employing the coprecipitation of chromium(III) with Al(OH)3. The interference of other metal ions was also studied.  相似文献   

11.
Molybdenum is determined by adsorptive cathodic stripping voltammetry in 0.15 M nitric acid solution containing 15 μM 2′,3,4′,5,7-pentahydroxyflavone (morin) as a ligand. In this medium, molybdenum is preconcentrated on a hanging mercury drop electrode and stripped cathodically in square-wave voltammetry mode, with a peak potential of -350 mV vs. Ag/AgCl (saturated KCl). The effect of various parameters (ligand concentration, supporting electrolyte composition, accumulation potential and collection time) on the sensitivity and linear range of the calibration curve are discussed. With controlled accumulation for 1 min, the detection limit (3σ) was 0.45 ng ml?1 molybdenum and the calibration curve is linear up to 70 ng ml?1. The procedure is applied to the determination of molybdenum in real samples with satisfactory results.  相似文献   

12.
A sensitive voltammetric method is presented for the determination of trace amounts of total chromium (Cr(III) and Cr(VI)) in natural waters, employing the square wave mode. The method is based on the preconcentration of the Cr(III)-TTHA complex by adsorption at the HMDE at the potential of –1.0 V vs. Ag/AgCl. The adsorbed complex is then reduced producing a response with a peak potential of –1.29 V and the peak height of the Cr(III) reduction is measured. The catalytic action of the nitrate ions on the Cr(III)-TTHA reduction has been elucidated using cyclic voltammetry. The adsorption of chromium complexes at the HMDE was investigated using out-of-phase a.c. voltammetry and the potential range of adsorption was determined.Based on these investigations optimal conditions for the determination of the total chromium concentration in the range 155–2000 ng 1–1 have been established. The determination limit is 15 ng 1–1 and the RSD is 3.5% for chromium concentrations 200 ng 1–1.The usefulness and wide scope of this method for reliable and highly sensitive chromium analysis down to the ultra trace levels existing in various types of natural waters is demonstrated by determinations of the total chromium content in lake, sea and rain water.  相似文献   

13.
A sensitive method for the simultaneous determination of trace amounts of nickel and cobalt in pure aluminium has been described using differential pulse adsorptive stripping voltammetry (DPASV) by adsorptive accumulation of the dimethyl glyoxime (DMG) complex on the hanging mercury drop electrode (HMDE). As supporting electrolyte 0.1 mol/l ammonia buffer, pH 9.0, containing ammonium citrate and 5×10–4 mol/l DMG has been used. The determination limit obtained has been as low as 0.5 g/g for Ni and 0.2 g/g for Co (using about 100 mg sample) with a relative standard deviation of 13% and 22%, respectively.  相似文献   

14.
A sensitive, simple and reproducible square-wave cathodic adsorptive stripping voltammetric method is developed for the determination of 2-mercaptobenzimidazole (MBIM) in different water samples using a static mercury drop electrode (SMDE) as a working electrode. The solution conditions and instrumental parameters were optimized for the determination of MBIM by square-wave cathodic adsorptive stripping voltammetry. This method is based on a sensitive adsorptive reduction peak of the MBIM at ?0.532 V vs. Ag/AgCl reference electrode in a Britton-Robinson buffer at pH 10.0. The linear concentration range was 20–600 ng ml?1 when using 0.0 V as the accumulation potential. The detection limit of the method was calculated to be 8.41 ng ml?1. The precision was excellent with relative standard deviations (n = 20) of 2.30%, 1.71%, 2.25% and 1.33% at MBIM concentrations of 40, 90, 200 and 500 ng ml?1, respectively. The proposed voltammetric method is used for the determination of MBIM in different spiked water samples.  相似文献   

15.
Ibrahim MS  Shehatta IS  Sultan MR 《Talanta》2002,56(3):471-479
The quinolone antibacterial agent nalidixic acid (NAL) was studied by cyclic voltammetry (CV) and cathodic adsorptive stripping voltammetry (CASV). A sensitive method is described for the determination of NAL in its pure form, dosage forms and biological fluids. Controlled adsorptive accumulation of NAL on a hanging mercury drop electrode provides the basis for the direct stripping measurement of that compound in the nanomolar concentration level. Different variables were studied and optimized. The proposed method depends upon the voltammetric activity of NAL in Britton-Robinson buffer, whereby a well-defined cathodic peak is produced at pH 5.0 in presence of NO(3)(-). The calibration graph to determine NAL was linear in the range 7.4x10(-8)-2.5x10(-5) M by CASV. CAS voltammetry has been proved to be advantageous over a liquid chromatographic (LC) technique, allowing to detection limit signal to noise ratio, (s/n=3) of 0.766 ng ml(-1) (3.3x10(-9) M) NAL to be reached. The relative standard deviation (n=5) was 5.2% at concentration level of 1.0x10(-7) M NAL. The degree of interference from coexisting metal ions on the CASV signal for NAL was evaluated. The method was applied to two different commercial pharmaceutical products (Negram tablets and suspension) with very good recoveries. It was also shown that the method was successfully applied to the determination of NAL in human urine and blood serum. Mean recoveries were 98.8+/-0.3 and 98.9+/-0.41%, respectively.  相似文献   

16.
The complex formation between uric acid and zinc, cadmium and lead ions has been investigated using differential pulse polarography in 0.01M NaNO(3). It is found that the complexes formed by Cd(II) and Pb(II) ions with uric acid have the stoichiometry of 1:2 and the logarithmic values of the apparent stability constant are 9.47 and 11.7, respectively. On the other hand, zinc(II) ions do not give any indication of complexation with uric acid. A sensitive voltammetric method is developed for the quantitative determination of uric acid. This method is based on controlled adsorptive preconcentration of uric acid on the hanging mercury drop electrode (HMDE), followed by tracing the voltammogram in the cathodic going potential scan. The modes used are direct current stripping voltammetry (DCSV) and differential pulse stripping voltammetry (DPSV). The detection limits found were 8 x 10(-9)M (quiescent period 15 sec) by DPSV and 1.6 x 10(-8)M by DCSV.  相似文献   

17.
This work addresses the simultaneous determination of copper(II) and antimony(III) in real matrices by differential pulse (DPASV) and fundamental harmonic alternating current anodic stripping voltammetry (ACASV). The voltammetric measurements were carried out using as supporting electrolyte the same acidic mixture (nitric, hydrochloric and perchloric acids) used in the dissolution of the real matrices with proper dilution. The procedure of the sample preparation is thus reduced to one step hence avoiding errors from long and complex sample handlings prior to the instrumental measurement. The results were verified by the analysis of the standard reference materials NBS-SRM 631 Spectrographic Zinc Spelter D-2 and BCS 207/2 Gunmetal. The precision, expressed as relative standard deviation, and the accuracy, expressed as relative error, were, in all cases, less than 5%; the detection limit, for each element and in the experimental conditions employed, was around 10−7 M. The standard addition technique improved the resolution of the voltammetric method, even in the case of very high metal concentration ratios.  相似文献   

18.
Different polarographic and voltammetric methods for the determination of Co in the presence of a large excess of zinc are reviewed. Adsorptive stripping voltammetry with in-situ matrix exchange and catalytic adsorptive stripping voltammetric methods are recommended for monitoring Co traces in zinc plant electrolyte. The principles of the catalytic adsorptive stripping voltammetric methods for Co determination are presented. The correct selection of the investigated supporting electrolytes, enabling the monitoring of Co traces in a zinc plant electrolyte by means of catalytic adsorptive methods is also discussed. The catalytic adsorptive voltammetric procedures offer the possibility of the determination of Co or Co and Ni traces in metallic zinc and zinc salts.  相似文献   

19.
This article reports for the first time the application of solid lead microelectrode for organic compound determination. The proposed sensor was used for anticancer drug Imatinib quantification by adsorptive stripping voltammetry. Procedure of Imatinib determination was developed utilizing advantages ensured by solid lead microelectrode: reusability and durability for a long period of time and its ecological character as compared to film electrodes. The detection limit of Imatinib determination was calculated to be 1.9 × 10−10 mol L−1. The analytical usability of the developed procedure was confirmed by acceptable recoveries of Imatinib determination in spiked urine samples.  相似文献   

20.
Catechol compounds are quantified by controlled adsorptive accumulation of their metal complexes onto a hanging mercury drop electrode followed by stripping voltammetry. By using tin(IV) as a redox marker for quantifying the surface-bound species, selectivity can be improved relative to conventional oxidative methods; dopamine can be quantified in the presence of ascorbic acid. The method allows measurements of micromolar levels of catechol, dopamine, l-dopa, 3,4-dihydroxyphenylacetic acid and caffeic acid. The adsorptive stripping response is evaluated with respect to preconcentration time and potential, tin(IV) and analyte concentrations, stripping mode, reproducibility and possible interferences. Analogously, solochrome violet RS and dimethylglyoxime can be quantified after accumulation of their iron(III) and nickel(II) complexes, respectively. Detection limits are 7×10?9 M for solochrome violet RS and 5×10?8 M for caffeic acid (1- and 5-min preconcentration, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号