首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bertotti M  Tokoro R 《Talanta》1989,36(3):424-426
The stability constants of indium-azide complexes were determined by the potentiometric method (glass electrode). The effect monitored was the change in pH of a solution of azide and hydrazoic acid (N(-)(3)/HN(3)) when indium(III) cations were added. The azide concentration was varied from close to zero to 90mM, the ionic strength being kept at 2.000 M with sodium perchlorate and the temperature at 25.0 degrees . Evaluation of experimental data showed only mononuclear species, and the global constants found were beta(1) = (2.0 +/- 0.1) x 10(3), beta(2) = (7 +/- 2) x 10(5), beta(3) = (5 +/- 1) x 10(7) and beta(4) = (7 +/- 3) x 10(8).  相似文献   

2.
The complex formation between Mn(II) cations and N(3)(-) anions was studied in aqueous medium at 25 degrees C and ionic strength 2.0 M (NaClO(4)). Data of average ligand number, n (Bjerrum's function), were obtained from pH measurements on the Mn(II)/N(3)(-)/HN(3) system followed by integration to obtain Leden's function, F(0)(L). Graphical treatment of data and a matrix solution of simultaneous equations have given the following overall formation constants of mononuclear stepwise complexes: beta(1)=4.15+/-0.02 M(-1), beta(2)=6.61+/-0.04 M(-2), beta(3)=3.33+/-0.02 M(-3), beta(4)=0.63+/-0.01 M(-4). A linear plot of log K(n) vs. (n-1) shows no change in the configuration during complex formation. Slow spontaneous oxidation of solutions to Mn(III) occurs when the N(3)(-) concentration is greater than 1.0 M.  相似文献   

3.
Three manganese(III) compounds, [Mn(III)(vanoph)(DMF)(H(2)O)]ClO(4) (1), [Mn(III)(vanoph)(N(3))(H(2)O)]·2H(2)O (2) and [Mn(III)(saloph)(μ(1,3)-N(3))](n) (3), where H(2)vanoph = N,N'-(1,2-phenylene)-bis(3-methoxysalicylideneimine), H(2)saloph = N,N'-(1,2-phenylene)-bis(salicylideneamine) are tetradentate N(2)O(2) ligands and DMF = N,N-dimethylformamide, have been prepared and characterised by elemental analysis, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction studies. Compounds 1 and 2 are monomeric but compound 3 consists of a chain system with the repeating unit [Mn(III)(saloph)(N(3))] bridged by μ-1,3 azide. Compound 1 crystallises in monoclinic space group P2(1)/n with cell dimensions of a = 11.1430(2), b = 16.3594(3), c = 15.4001(3) ?, β = 108.417(1), Z = 4 whereas compounds 2 and 3 crystallise in orthorhombic space groups Pbca and Pna2(1), respectively, with cell dimensions of a = 16.069(3), b = 15.616(3), c = 18.099(4) ?, Z = 8 (for 2) and a = 18.760(9), b = 13.356(5), c = 6.616(3) ?, Z = 4 (for 3). In all the compounds, Mn(III) has a six-coordinated pseudo-octahedral geometry in which O(2), O(3), N(1) and N(2) atoms of the deprotonated di-Schiff base constitute the equatorial plane. In both compounds 1 and 2, water molecules are present in the fifth coordination sites in the apical positions. The sixth coordination sites are occupied by one O atom of a solvent DMF in compound 1 and an N atom of azide in compound 2. The coordinated water initiates hydrogen-bonded networks in both compounds 1 and 2 to form well-isolated supramolecular dimers. At room temperature the χ(M)T values for the compounds 1 and 2 remain almost constant until 30 K. Below this temperature, the χ(M)T values drastically drop to 0.72 cm(3) mol(-1) K for 1 and 0.52 cm(3) mol(-1) K for 2. The best fits were obtained with J = -0.92 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 8.1 × 10(-4) for 1 and J = -1.16 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 1.2 × 10(-3) for 2. However, in compound 3, two axial positions are occupied by the azide ions. The Mn···Mn repeating distance is 6.616 ? along the chain. Magnetic characterisation shows that the μ(1,3)-bridging azide ion mainly transmits an antiferromagnetic interaction (J = -6.36 cm(-1)) between Mn(III) ions. The presence of two methoxy groups increases the steric crowding in the H(2)vanoph moiety and thereby inhibits the formation of a polynuclear compound with this ligand.  相似文献   

4.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

5.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

6.
Arrhenius parameters for the reaction of hydrogen atoms with azide and thiocyanate in aqueous solution have been determined using electron pulse radiolysis and electron paramagnetic resonance free induction decay attenuation measurements. Absolute values for SCN-, N3(-), and HN3 were well-described over the temperature range of 9-81 degrees C by the equations log k5 = (12.03 +/- 0.12) - [(21.05 +/- 0.66 kJ mol(-1))/2.303RT], log k10 = (12.75 +/- 0.21) - [(18.43 +/- 1.22 kJ mol(-1))/2.303RT], and log k15 = (11.59 +/- 0.12) - [(21.44 +/- 0.69 kJ mol(-1))/2.303RT], corresponding to room temperature (22 degrees C) rate constants of (2.07 +/- 0.03) x 10(8), (3.15 +/- 0.08) x 10(9), and (6.31 +/- 0.05) x 10(7) M(-1) s(-1) and activation energies for these chemicals of 21.05 +/- 0.66, 18.4 +/- 1.2, and 21.44 +/- 0.69 kJ mol(-1), respectively. The similarity of these three measured activation energies, taken together with the available information on reaction products, suggests a similar reaction mechanism, which is proposed to be an initial hydrogen atom adduct formation in these molecules, followed by single bond breakage.  相似文献   

7.
A series of two-dimensional (2D) oxalate-based compounds, namely [N(n-C4H9)4][M(II)Cr(III)(ox)3] (M(II) = Mn, Fe; ox = C2O4(2-)) and [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][M(II)M(III)(ox)(3)] ((M(II), M(III)) =(Mn, Cr), (Fe, Cr), (Mn, Fe)) were synthesised starting from racemic tris(oxalato)metalate: rac-[M(III)(ox)3]3- (M(III) = Cr, Fe). For Cr(III), the synthesis has been undertaken starting from resolved (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. The natural circular dichroism measurements assess the enantioselectivity of the synthesis. X-Ray powder diffraction analysis has revealed that, when racemic reagents are used to synthesise Mn(II) containing compounds, a R3c achiral space group is found. In contrast a P6(3) chiral space group is found when starting from (Delta)- or (Lambda)-[Cr(III)(ox)3]3-. Surprisingly, whatever the optical purity of the starting building block, all Fe(II) containing compounds crystallise in the P6(3) chiral space group. The magnetic properties of the synthesised compounds confirm that these compounds are ferromagnets for M(III)= Cr. For M(II)= Mn, Theta ranges between 9 and 11 K and T(c) equals 6 K. For M(II)= Fe, Theta ranges between 14 and 16 K and Tc between 11 and 12 K. [N(C2H5)(n-C3H7)(n-C4H9)(n-C5H11)][Mn(II)Fe(III)(ox)3] is an antiferromagnet with Theta = - 107 K and T(N) = 29 K.  相似文献   

8.
The reaction of N,N-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH), NaSCN/NaN(3), and metal (M) ions [M = Mn(II), Fe(II/III), Co(II)] in MeOH, leads to the isolation of a series of monomeric, trimeric, and tetrameric metal complexes, namely [Mn(bpaeOH)(NCS)(2)] (1), [Mn(bpaeO)(N(3))(2)] (2), [Fe(bpaeOH)(NCS)(2)] (3), [Fe(4)(bpaeO)(2)(CH(3)O)(2)(N(3))(8)] (4), [Co(bpaeOH)(NCS)(2)] (5), and [Co(3)(bpaeO)(2)(NO(3))(N(3))(4)](NO(3)) (6). These compounds have been investigated by single crystal X-ray diffractometry and magnetochemistry. In complex 1 the Mn(II) is bonded to one bpaeOH and two thiocyanate ions, while in complex 2 it is coordinated to a deprotonated bpaeO(-) and two azide ions. The oxidation states of manganese ions are 2+ for 1 and 3+ for 2, respectively, indicating that the different oxidation states depend on the type of binding anions. The structures of monomeric iron(II) and cobalt(II) complexes 3 and 5 with two thiocyanate ions are isomorphous to that of 1. Compounds 1, 2, 3, and 5 exhibit high-spin states in the temperature range 5 to 300 K. 4 contains two different iron(III) ions in an asymmetric unit, one is coordinated to a deprotonated bpaeO(-), an azide ion, and a methoxy group, and the other is bonded to three azide ions and two oxygens from bpaeO(-) and a methoxy group. Two independent iron(III) ions in 4 form a tetranuclear complex by symmetry. 4 displays both ferromagnetic and antiferromagnetic couplings (J = 9.8 and -14.3 cm(-1)) between the iron(III) ions. 6 is a mixed-valence trinuclear cobalt complex, which is formulated as Co(III)(S = 0)-Co(II)(S = 3/2)-Co(III)(S = 0). The effective magnetic moment at room temperature corresponds to the high-spin cobalt(II) ion (~4.27 μ(B)). Interestingly, 6 showed efficient catalytic activities toward various olefins and alcohols with modest to excellent yields, and it has been proposed that a high-valent Co(V)-oxo species might be responsible for oxygen atom transfer in the olefin epoxidation and alcohol oxidation reactions.  相似文献   

9.
The small subunit of Escherichia coli ribonucleotide reductase (R2) is a homodimeric (betabeta) protein, in which each beta-peptide contains a diiron cluster composed of two inequivalent iron sites. R2 is capable of reductively activating O(2) to produce a stable tyrosine radical (Y122*), which is essential for production of deoxyribonucleotides on the larger R1 subunit. In this work, the paramagnetic Mn(II) ion is used as a spectroscopic probe to characterize the assembly of the R2 site with EPR spectroscopy. Upon titration of Mn(II) into samples of apoR2, we have been able to quantitatively follow three species (aquaMn(II), mononuclear Mn(II)R2, and dinuclear Mn(2)(II)R2) and fit each to a sequential two binding site model. As previously observed for Fe(II) binding within apoR2, one of the sites has a greater binding affinity relative to the other, K(1) = (5.5 +/- 1.1) x 10(5) M(-)(1) and K(2) = (3.9 +/- 0.6) x 10(4) M(-)(1), which are assigned to the B and A sites, respectively. In multiple titrations, only one dinuclear Mn(2)(II)R2 site was created per homodimer of R2, indicating that only one of the two beta-peptides of R2 is capable of binding Mn(II) following addition of Mn(II) to apoR2. Under anaerobic conditions, addition of only 2 equiv of Fe(II) to R2 (Fe(2)(II)R2) completely prevented the formation of any bound MnR2 species. Upon reaction of this sample with O(2) in the presence of Mn(II), both Y122* and Mn(2)(II)R2 were produced in equal amounts. Previous stopped-flow absorption spectroscopy studies have indicated that apoR2 undergoes a protein conformational change upon binding of metal (Tong et al. J. Am. Chem. Soc. 1996, 118, 2107-2108). On the basis of these observations, we propose a model for R2 metal incorporation that invokes an allosteric interaction between the two beta-peptides of R2. Upon binding the first equiv of metal to a beta-peptide (beta(I)), the aforementioned protein conformational change prevents metal binding in the adjacent beta-peptide (beta(II)) approximately 25 A away. Furthermore, we show that metal incorporation into beta(II) occurs only during the O(2) activation chemistry of the beta(I)-peptide. This is the first direct evidence of an allosteric interaction between the two beta-peptides of R2. Furthermore, this model can explain the generally observed low Fe occupancy of R2. We also demonstrate that metal uptake and this newly observed allosteric effect are buffer dependent. Higher levels of glycerol cause loss of the allosteric effect. Reductive cycling of samples in the presence of Mn(II) produced a novel mixed metal Fe(III)Mn(III)R2 species within the active site of R2. The magnitude of the exchange coupling (J) determined for both the Mn(2)(II)R2 and Fe(III)Mn(III)R2 species was determined to be -1.8 +/- 0.3 and -18 +/- 3 cm(-)(1), respectively. Quantitative spectral simulations for the Fe(III)Mn(III)R2 and mononuclear Mn(II)R2 species are provided. This work represents the first instance where both X- and Q-band simulations of perpendicular and parallel mode spectra were used to quantitatively predict the concentration of a protein bound mononuclear Mn(II) species.  相似文献   

10.
To determine how a substitutionally inert metal can play a catalytic role in the metalloenzyme nitrile hydratase (NHase), a reactive five-coordinate Co(III) thiolate complex ([Co(III)(S(2)(Me2)N(3)(Pr,Pr))](PF(6)) (1)) that resembles the active site of cobalt containing nitrile hydratase (Co NHase) was prepared. This was screened for reactivity, by using low-temperature electronic absorption spectroscopy, toward a number of biologically relevant "substrates". It was determined 1 will react with azide, thiocyanate, and ammonia, but is unreactive toward nitriles, NO, and butyrate. Substrate-bound 1 has similar spectroscopic and structural properties as [Co(III)(ADIT(2))](PF(6)) (2). Complex 2 is a six-coordinate Co(III) complex containing cis-thiolates and imine nitrogens, and has properties similar to the cobalt center of Co NHase. Substrate binding to 1 is reversible and temperature-dependent, allowing for the determination of the thermodynamic parameters of azide and thiocyanate binding and the rates of ligand dissociation. Azide and thiocyanate bind trans to a thiolate, and with similar entropies and enthalpies (thiocyanate: DeltaH = -7.5 +/- 1.1 kcal/mol, DeltaS = -17.2 +/- 3.2 eu; azide: DeltaH = -6.5 +/- 1.0 kcal/mol, DeltaS = -12.6 +/- 2.4 eu). The rates of azide and thiocyanate displacement from the metal center are also comparable to one another (k(d) = (7.22 +/- 0.04) x 10(-)(1) s(-)(1) for thiocyanate and k(d) = (2.14 +/- 0.50) x 10(-)(2) s(-)(1) for azide), and are considerably faster than one would expect for a low-spin d(6) six-coordinate Co(III) complex. These rates are comparable to those of an analogous Fe(III) complex, demonstrating that Co(III) and Fe(III) react at comparable rates when in this ligand environment. This study therefore indicates that ligand displacement from a low-spin Co(III) center in a ligand environment that resembles NHase is not prohibitively slow so as to disallow catalytic action in nonredox active cobalt metalloenzymes.  相似文献   

11.
Kamau P  Jordan RB 《Inorganic chemistry》2001,40(16):3879-3883
A simple spectrophotometric method for the evaluation of formation constants for aqueous copper(I) has been developed, based on the kinetics of reduction of Co(III)(NH(3))(5)X complexes. The method has been applied to the aqueous copper(I)-acetonitrile system to determine the successive formation constants beta(1), beta(2), and beta(3) as 4.3 x 10(2) M(-)(1), 1.0 x 10(4) M(-)(2), and 2.0 x 10(4) M(-)(3), respectively, in 0.14 M NaClO(4)/HClO(4) at 21 +/- 1 degrees C.  相似文献   

12.
The synthesis and characterization of the Fe(III) complex of a novel crown ether-porphyrin conjugate, 52-N-(4-aza-18-crown-6)methyl-54,104,154,204-tetra-tert-butyl-56-methyl-5,10,15,20-tetraphenylporphyrin (H2Porph), as well as the corresponding hydroxo, dimeric, Fe(II), and peroxo species are reported. The crystal structure of [FeIII(Porph)Cl].H3O+.FeCl4-.C6H6.EtOH is also reported. [FeIII(Porph)(DMSO)2]+ and K[FeIII(Porph)(O22-)] are high-spin species (M?ssbauer data: delta = 0.38 mm s(-1), DeltaEq = 0.83 mm s(-1) and delta = 0.41 mm s(-1), DeltaEq = 0.51 mm s(-1), respectively), whereas in a solution of reduced [FeIII(Porph)(DMSO)2]+ complex the low-spin [FeII(Porph)(DMSO)2] (delta = 0.44 mm s(-1), DeltaEq = 1.32 mm s(-1)) and high-spin [FeII(Porph)(DMSO)] (delta = 1.27 mm s(-1), DeltaEq = 3.13 mm s(-1)) iron(II) species are observed. The reaction of [FeIII(Porph)(DMSO)2]+ with KO2 in DMSO has been investigated. The first reaction step, involving reduction to [FeII(Porph)(DMSO)2], was not investigated in detail because of parallel formation of an Fe(III)-hydroxo species. The kinetics and thermodynamics of the second reaction step, reversible binding of superoxide to the Fe(II) complex and formation of an Fe(III)-peroxo species, were studied in detail (by stopped-flow time-resolved UV/vis measurements in DMSO at 25 degrees C), resulting in kon = 36 500 +/- 500 M(-1) s(-1), koff = 0.21 +/- 0.01 s(-1) (direct measurements using an acid as a superoxide scavenger), and KO2- = (1.7 +/- 0.2) x 10(5) (superoxide binding constant kinetically obtained as kon/koff), (1.4 +/- 0.1) x 10(5), and (9.0 +/- 0.1) x 10(4) M(-1) (thermodynamically obtained in the absence and in the presence of 0.1 M NBu4PF6, respectively). Temperature-dependent kinetic measurements for kon (-40 to 25 degrees C in 3:7 DMSO/CH3CN mixture) yielded the activation parameters DeltaH = 61.2 +/- 0.9 kJ mol(-1) and DeltaS = +48 +/- 3 J K(-1) mol(-1). The observed reversible binding of superoxide to the metal center and the obtained kinetic and thermodynamic parameters are unique. The finding that fine-tuning of the proton concentration can cause the Fe(III)-peroxo species to release O2- and form an Fe(II) species is of biological interest, since this process might occur under very specific physiological conditions.  相似文献   

13.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

14.
Reported is a time-resolved infrared and optical kinetics investigation of the transient species CH(3)C(O)Mn(CO)(4) (I(Mn)) generated by flash photolysis of the acetyl manganese pentacarbonyl complex CH(3)C(O)Mn(CO)(5) (A(Mn)) in cyclohexane and in tetrahydrofuran. Activation parameters were determined for CO trapping of I(Mn) to regenerate A(Mn) (rate = k(CO) [CO][I(Mn)]) as well as the methyl migration pathway to form methylmanganese pentacarbonyl CH(3)Mn(CO)(5) (M(Mn)) (rate = k(M)[I(Mn)]). These values were Delta H(++)(CO) = 31 +/- 1 kJ mol(-1), Delta S(++)(CO) = -64 +/- 3 J mol(-1) K(-1), Delta H(++)(M) = 35 +/- 1 kJ mol(-1), and Delta S(++)(M) = -111 +/- 3 J mol(-1) K(-1). Substantially different activation parameters were found for the methyl migration kinetics of I(Mn) in THF solutions where Delta H(++)(M) = 68 +/- 4 kJ mol(-1) and Delta S(++)(M) = 10 +/- 10 J mol(-1) K(-1), consistent with the earlier conclusion (Boese, W. T.; Ford, P. C. J. Am. Chem. Soc. 1995, 117, 8381-8391) that the composition of I(Mn) is different in these two media. The possible isotope effect on k(M) was also evaluated by studying the intermediates generated from flash photolysis of CD(3)C(O)Mn(CO)(5) in cyclohexane, but this was found to be nearly negligible (k(M)(h)/k(M)(d) (298 K) = 0.97 +/- 0.05, Delta H(++)(M)(d) = 37 +/- 4 kJ mol(-1), and Delta S(++)(M)(d) = -104 +/- 12 J mol(-1) K(-1)). The relevance to the migratory insertion mechanism of CH(3)Mn(CO)(5), a model for catalytic carbonylations, is discussed.  相似文献   

15.
The formation of the sitting-atop (SAT) complexes of 5,10,15,20-tetraphenylporphyrin (H(2)tpp), 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (H(2)t(4-Clp)p), 5,10,15,20-tetramesitylporphyrin (H(2)tmp), and 2,3,7,8,12,13,17,18-octaethylporphyrin (H(2)oep) with the Cu(II) ion was spectrophotometrically confirmed in aqueous acetonitrile (AN), and the formation rates were determined as a function of the water concentration (C(W)). The decrease in the conditional first-order rate constants with the increasing C(W) was reproduced by taking into consideration the contribution of [Cu(H(2)O)(an)(5)](2+) in addition to [Cu(an)(6)](2+) to form the Cu(II)-SAT complexes. The second-order rate constants for the reaction of [Cu(an)(6)](2+) and [Cu(H(2)O)(an)(5)](2+) at 298 K were respectively determined as follows: (4.1 +/- 0.2) x 10(5) and (3.6 +/- 0.2) x 10(4) M(-1) s(-1) for H(2)tpp, (1.15 +/- 0.06) x 10(5) M(-1) s(-1) and negligible for H(2)t(4-Clp)p, and (4.8 +/- 0.3) x 10(3) and (1.3 +/- 0.3) x 10(2) M(-1) s(-1) for H(2)tmp. Since the reaction of H(2)oep was too fast to observe the reaction trace due to the dead time of 2 ms for the present stopped-flow technique, the rate constant was estimated to be greater than 1.5 x 10(6) M(-1) s(-1). According to the structure of the Cu(II)-SAT complexes determined by the fluorescent XAFS measurements, two pyrrolenine nitrogens of the meso-substituted porphyrins (H(2)tpp and H(2)tmp) bind to the Cu(II) ion with a Cu-N(pyr) distance of ca. 2.04 A, while those of the beta-pyrrole-substituted porphyrin (H(2)oep) coordinate with the corresponding bond distance of 1.97 A. The shorter distance of H(2)oep is ascribed to the flexibility of the porphyrin ring, and the much greater rate for the formation of the Cu(II)-SAT complex of H(2)oep than those for the meso-substituted porphyrins is interpreted as due to a small energetic loss at the porphyrin deformation step during the formation of the Cu(II)-SAT complex. The overall formation constants, beta(n), of [Cu(H(2)O)(n)()(an)(6)(-)(n)](2+) for the water addition in aqueous AN were spectrophotometrically determined at 298 K as follows: log(beta(1)/M(-1)) = 1.19 +/- 0.18, log(beta(2)/M(-2)) = 1.86 +/- 0.35, and log(beta(3)/M(-3)) = 2.12 +/- 0.57. The structure parameters around the Cu(II) ion in [Cu(H(2)O)(n)(an)(6-n)](2+) were determined using XAFS spectroscopy.  相似文献   

16.
Solvated cobalt(II) ions in neat 1,3-propanediamine (tn) and n-propylamine (pa) have been characterized by electronic absorption spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The equilibrium between tetrahedral and octahedral geometry for cobalt(II) ion has been observed in a neat pa solution, but not in neat diamine solutions such as tn and ethylenediamine (en). The thermodynamic parameters and equilibrium constant at 298 K for the geometrical equilibrium in pa were determined to be DeltaH degrees = -36.1 +/- 2.3 kJ mol(-1), DeltaS degrees = -163 +/- 8 J mol(-1) K(-1), and K(298) = 6.0 x 10(-3) M(-2), where K = [Co(pa)(6)(2+)]/{[Co(pa)(4)(2+)][pa](2)}. The equilibrium is caused by the large entropy gain in formation of the tetrahedral cobalt(II) species. The solvent exchange of cobalt(II) ion with octahedral geometry in tn and pa solutions has been studied by the (14)N NMR line-broadening method. The activation parameters and rate constants at 298 K for the solvent exchange reactions are as follows: DeltaH() = 49.3 +/- 0.9 kJ mol(-1), DeltaS() = 25 +/- 3 J mol(-1) K(-1), DeltaV() = 6.6 +/- 0.3 cm(3) mol(-1) at 302.1 K, and k(298) = 2.9 x 10(5) s(-1) for the tn exchange, and DeltaH() = 36.2 +/- 1.2 kJ mol(-1), DeltaS() = 35 +/- 6 J mol(-1) K(-1), and k(298) = 2.0 x 10(8) s(-1) for the pa exchange. By comparison of the activation parameters with those for the en exchange of cobalt(II) ion, it has been confirmed that the kinetic chelate strain effect is attributed to the large activation enthalpy for the bidentate chelate opening and that the enthalpic effect is smaller in the case of the six-membered tn chelate compared with the five-membered en chelate.  相似文献   

17.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

18.
The oxidation of hydrogen bromide and alkali metal bromide salts to bromine in acetic acid by cobalt(III) acetate has been studied. The oxidation is inhibited by Mn(OAc)(2) and Co(OAc)(2), which lower the bromide concentration through complexation. Stability constants for Co(II)Br(n)() were redetermined in acetic acid containing 0.1% water as a function of temperature. This amount of water lowers the stability constant values as compared to glacial acetic acid. Mn(II)Br(n)() complexes were identified by UV-visible spectroscopy, and the stability constants for Mn(II)Br(n)() were determined by electrochemical methods. The kinetics of HBr oxidation shows that there is a new pathway in the presence of M(II)Br(n)(). Analysis of the concentration dependences shows that CoBr(2) and MnBr(2) are the principal and perhaps sole forms of the divalent metals that react with Co(III) and Mn(III). The interpretation of these data is in terms of this step (M, N = Mn or Co): M(OAc)(3) + N(II)Br(2) + HOAc --> M(OAc)(2) + N(III)Br(2)OAc. The second-order rate constants (L mol(-)(1) s(-)(1)) for different M, N pairs in glacial acetic acid are 4.8 (Co, Co at 40 degrees C), 0.96 (Mn, Co at 20 degrees C), 0.15 (Mn(III).Co(II), Co at 20 degrees C), and 0.07 (Mn, Mn at 20 degrees C). Following that, reductive elimination of the dibromide radical is proposed to occur: N(III)Br(2)OAc + HOAc --> N(OAc)(2) + HBr(2)(*). This finding implicates the dibromide radical as a key intermediate in this chemistry, and indeed in the cobalt-bromide catalyzed autoxidation of methylarenes, for which some form of zerovalent bromine has been identified. The selectivity for CoBr(2) and MnBr(2) is consistent with a pathway that forms this radical rather than bromine atoms which are at a considerably higher Gibbs energy. Mn(OAc)(3) oxidizes PhCH(2)Br, k = 1.3 L mol(-)(1) s(-)(1) at 50.0 degrees C in HOAc.  相似文献   

19.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.  相似文献   

20.
alpha-Cyclodextrin, beta-cyclodextrin, N-(6(A)-deoxy-alpha-cyclodextrin-6(A)-yl)-N'6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea and N,N-bis(6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea (alphaCD, betaCD, 1 and 2) form inclusion complexes with E-4-tert-butylphenyl-4'-oxyazobenzene, E-3(-). In aqueous solution at pH 10.0, 298.2 K and I = 0.10 mol dm(-3)(NaClO(4)) spectrophotometric UV-visible studies yield the sequential formation constants: K(11) = (2.83 +/- 0.28) x 10(5) dm(3) mol(-1) for alphaCD.E-(-), K(21) = (6.93 +/- 0.06) x 10(3) dm(3) mol(-1) for (alphaCD)(2).E-3(-), K(11) = (1.24 +/- 0.12) x 10(5) dm(3) mol(-1) for betaCD.E-(-), K(21) = (1.22 +/- 0.06) x 10(4) dm(3) mol(-1) for (betaCD)(2).E-(-), K(11) = (3.08 +/- 0.03) x 10(5) dm(3) mol(-1) for .E-3(-), K(11) = (8.05 +/- 0.63) x 10(4) dm(3) mol(-1) for .E-3(-) and K(12) = (2.42 +/- 0.53) x 10(4) dm(3) mol(-1) for .(E-3(-))(2). (1)H ROESY NMR studies show that complexation of E-3(-) in the annuli of alphaCD, betaCD, 1 and 2 occurs. A variable-temperature (1)H NMR study yields k(298 K)= 6.7 +/- 0.5 and 5.7 +/- 0.5 s(-1), DeltaH = 61.7 +/- 2.7 and 88.1 +/- 4.2 kJ mol(-1) and DeltaS = -22.2 +/- 8.7 and 65 +/- 13 J K(-1) mol(-1) for the interconversion of the dominant includomers (complexes with different orientations of alphaCD) of alphaCD.E-3(-) and (alphaCD)(2).E-3(-), respectively. The existence of E-3(-) as the sole isomer was investigated through an ab initio study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号