首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The kinetics of the reaction between zinc dust and alkali silicate in water-borne silicate zinc-rich paints was investigated on the basis of rheological measurements. The paints studied were formulated with the same zinc dust/silicate vehicle ratio. Different zinc dusts were employed. The vehicle was a litiumsodium silicate solution. Formulation included a rheological agent to prevent rapid settling of suspended zinc dust.Rheological tests were carried out at various time intervals after paint mixing. Each sample was subjected, stepwise, to increasing and decreasing shear rate sequences, each shear rate being applied until stress steady values were attained. Shear rates were within the range 2.35 to 1700 s–1; subsequently, hysteresis cycles were traced. Equilibrium data were fitted with the Bingham equation.Yield values and ultimate viscosities obtained at the various test time intervals were compared. Both parameters were found to increase with increasing time after mixing. Their increase in time brings out the fact that two successive processes take place; accordingly, structural hypotheses were suggested taking into account the modification set up in the system by the zincsilicate reaction.
Zusammenfassung Die Kinetik der Reaktion zwischen Zinkstaub und Alkalisilikat in wäßrigen Silikat-Zink-Farben wurde mit Hilfe rheologischer Messungen erforscht. Die untersuchten Farben wurden stets mit dem gleichen Verhältnis von Zinkstaub zu Silikat-Träger formuliert. Dabei wurden verschiedene Zinkstäube eingesetzt. Der Träger bestand aus einer Lithium-Natrium-Silikat-Lösung. In der Formulierung war außerdem ein rheologischer Wirkstoff, der das schnelle Absetzen des suspendierten Zinkstaubes verhindern sollte, enthalten.Die rheologischen Messungen wurden zu verschiedenen Zeiten nach dem Farbmischen durchgeführt. Jede Probe wurde einer auf- und absteigenden Stufenfolge von Schergeschwindigkeiten unterworfen, wobei die Scherung solange konstant gehalten wurde, bis sich ein stationärer Wert eingestellt hatte. Die Schergeschwindigkeiten lagen dabei in einem Bereich zwischen 2,35 und 1700 s–1. Anschließend wurden Hysteresisschleifen aufgenommen.Die Gleichgewichtswerte ließen sich mit der Bingham-Gleichung beschreiben. Fließgrenzen und Endviskositäten, die nach verschiedenen Zeitdauern gemessen worden waren, wurden miteinander verglichen. Beide Parameter nahmen mit der Zeit zu. Daraus ist erkennbar, daß zwei aufeinanderfolgende Prozesse stattfinden. Dementsprechend werden Strukturmodelle vorgeschlagen, welche die Veränderungen in Rechnung stellen, die als Folge der Zink-Silikat-Reaktionen in dem System stattfinden.

List of symbols shear rate - ÿ shear acceleration - r relative viscosity - R reduced viscosity - 0 continuous phase viscosity - , ,0, ,t ultimate shear rate, at the beginning of the reaction, at timet - shear stress - R reduced shear stress - 0, 0,0, 0,t yield stress, at the beginning of the reaction, at timet - , max disperse phase volume fraction, maximum volume fraction - a, a , a shift factor, viscosity shift factor, shear stress shift factor - a 1,, a2, see eq. [4] - k 1,k2 reaction rate constants - K E see eq. [5] - t time - t C characteristic time Abbreviations MSD mean square deviation (=( exp calc)2/(n — K);n = number of experimental points,K = number of parameters) Paper presented at the Joint Conference of the British, Italian and Netherlands Societies of Rheology, Amsterdam, April 18–20, 1979.With 6 figures and 3 tables  相似文献   

2.
It is shown that for scalar dissipative delay-diffusion equationsu tu=f(u(t),u(t–)) with a small delay, all solutions are asymptotic to the set of equilibria ast tends to infinity.  相似文献   

3.
We consider an asymptotic theory of the turbulent boundary layer [1,2]. In this paper we make an attempt to further develop the mathematical aspects of this theory. We demonstrate the features of this theory by applying it to a problem which is close to the so-called equilibrium turbulent boundary layer with a pressure gradient and blowing.Notation x, y coordinates, parallel and perpendicular to the wall - u velocity component in the x direction - p, ',v pressure, density, and kinematic viscosity coefficient - l' scale of turbulence - tangential stress - u speed at the outer edge of the boundary layer - thickness of the boundary layer - * displacement thickness - ** momentum loss thickness - Cf coefficient of friction - R Reynolds number Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 86–95, September–October, 1971.The author thanks S. S. Kutateladze, A. I. Leont'ev, and G. V. Aronovich for their interest in this effort.  相似文献   

4.
Solution of a non-homogeneous Fredholm integral equation of the second kind [1], which forms the basis for the evaluation of the constriction resistance of an isothermal circular spot on a half-space covered with a surface layer of different material, is considered for the case when the ratio, , of layer thickness to spot radius is larger than unity. The kernel of the integral equation is expanded into an infinite series in ascending odd-powers of (1/) and an approximate kernel accurate to (–(2M+1)) is derived therefrom by terminating the series after an arbitrary but finite number of terms, M. The approximate kernel is rearranged into a degenerate form and the integral equation with this approximate kernel is reduced to a system of M linear equations. An explicit analytical solution is obtained for a four-term approximation of the kernel and the resulting constriction resistance is shown to be accurate to (–9). Solutions of lower orders of accuracy with respect to (1/) are deduced from the four-term solution. The analytical approximations are compared with very accurate numerical solutions and it is shown that the (–9)-approximation predicts the constriction resistance exceedingly well for any 1 over a four orders of magnitude variation of layer-to-substrate conductivity ratio for both conducting and insulating layers. It is further shown that, for all practical purposes, an (–3)-approximation gives results of adequate accuracy for > 2.  相似文献   

5.
Summary Similarity laws for the mean flow and scaling laws for the turbulent motion are used in an attempt to obtain a general expression for the eddy viscosity of equilibrium layers. It is found that =0.09 w 2 /w*, in which w 2 is a Reynolds stress representative for the region of overlap between the law of the wall and the velocity-defect law, while w* is the logarithmic slope of the mean velocity profile in that region. The distinction between w and w* is related to the strong inhomogeneity of the mean rate of strain in the inner layer. The results of the theory agree with experimental evidence obtained from transpired equilibrium layers.  相似文献   

6.
In [1, 2] turbulence of the external flow was taken into account by specifying the turbulent energy at the external boundary of the boundary layer on integrating the energy-balance equation for the turbulence. In [3] a special correction that allowed the turbulence of the external flow to be taken into account was introduced in determining the mixture path. In [4, 5] the turbulent energy calculated from the energy-balance equation of the turbulence was added to the energy induced by turbulence of the external flow, the energy distribution of the induced turbulence being specified using an empirically selected function. In [6, 7] a method of taking into account the effect of turbulence of the external flow on a layer of mixing and a jet was proposed. In the present work, this method is applied to the boundary layer at a plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 26–31, May–June, 1977.  相似文献   

7.
An analytical solution is presented for the calculation of the flow field in a concentric cylinder viscometer of non-ideal Bingham-fluids, described by the Worrall-Tuliani rheological model. The obtained shear rate distribution is a function of the a priori unknown rheological parameters. It is shown that by applying an iterative procedure experimental data can be processed in order to obtain the proper shear rate correction and the four rheological parameters of the Worrall-Tuliani model as well as the yield surface radius. A comparison with Krieger's correction method is made. Rheometrical data for dense cohesive sediment suspensions have been reviewed in the light of this new method. For these suspensions velocity profiles over the gap are computed and the shear layer thicknesses were found to be comparable to visual observations. It can be concluded that at low rotation speeds the actually sheared layer is too narrow to fullfill the gap width requirement for granular suspensions and slip appears to be unavoidable, even when the material is sheared within itself. The only way to obtain meaningfull measurements in a concentric cylinder viscometer at low shear rates seems to be by increasing the radii of the viscometer. Some dimensioning criteria are presented.Notation A, B Integration constants - C Dimensionless rotation speed = µ/y - c = 2µ - d = 0 2–2cy - f() = (–0)2+2c(–y) - r Radius - r b Bob radius - r c Cup radius - r y Yield radius - r 0 Stationary surface radius - r Rotating Stationary radius - Y 0 Shear rate parameter = /µ Greek letters Shear rate - = (r y /r b )2– 1 - µ Bingham viscosity - µ0 Initial differential viscosity - µ µ0 - Rotation speed - Angular velocity - Shear stress - b Bob shear stress - B Bingham stress - y (True) yield stress - 0 Stress parameter = B Y 0 - B - y   相似文献   

8.
A study is made of plane-parallel convective motion of a viscoplastic liquid between parallel vertical planes on which different temperatures are maintained. In contrast to [1], the yield shear stress 0 is not a constant but is assumed to be a function of the temperature; moreover, above a certain critical temperature T* the yield shear stress vanishes, so that for T > T* the liquid is purely Newtonian. The structure of the regions of quasirigid and viscoplastic flow is studied in its dependence on the Theological parameters. The velocity profiles corresponding to the different flow regimes are found, and the boundaries between the regimes and the longitudinal heat flux are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 118–123, March–April, 1980.We thank G. Z. Gershuni and A. A. Nepomnyashchii for a helpful discussion of the work.  相似文献   

9.
The study of the characteristics of the turbulence in the boundary layer and in free jets is one of the most important problems of the aerodynamics of viscous fluids. The accumulation of information on the pulsation characteristics of jet flows and the establishment of the corresponding governing laws may serve to verify the basic hypotheses of the semiempirical theories of turbulence, and also for the development of more advanced computational methods. In many cases the measurement of the pulsation characteristics of turbulent jets is of practical interest.The studies made up till now [1–5] of the microstructure of turbulent flow in the primary region of submerged axisymmetric jets have made it possible to obtain several interesting results. In particular, in addition to the average velocity profiles, hot-wire anemometric equipment has been used to measure the normal and tangential Reynolds stresses and also the intermittency factor in cross sections of the jet, the distribution of the intensity of the longitudinal and lateral velocity pulsations along the axis, the correlation coefficients and the corresponding integral turbulence scales, etc. These measurements have made it possible to draw several important conclusions on the mechanism of turbulent exchange, on the order of the terms omitted in the equation of motion, and on the semiempirical theories of turbulence [6–9].The common deficiency of the studies mentioned above is that near the boundary of a submerged jet, where the average velocity is practically equal to zero, the intensity of the pulsations is so great that it makes the reliability of the results obtained by means of the hotwire anemometer questionable. In this connection Townsend [6] indicated the advisability of studying the microstructure of a turbulent jet issuing into a low-velocity ambient flow.The present study had as its objective the investigation of the microstructure of the primary region of an axisymmetric jet in a wake flow over quite a broad range of the flow ratio parameter m=u/u0;here u0 is the average velocity at the nozzle exit, u is the velocity of the ambient stream. For various values of the parameter m in the primary region of the jet measurements were made of the profiles of the three components of the pulsation velocity and the Reynolds shear stresses, and also the values of the average velocity and two components of the pulsation velocity at a large number of points on the jet axis. The measured profiles of the Reynolds shear stresses were compared with the corresponding profiles calculated on the basis of the boundary layer equations from the experimentally determined average velocity profiles. For two values of the parameter m, in one of the sections of the jet measurements were made of the correlation coefficients of the longitudinal components of the pulsation velocity and the variation across the jet of the integral turbulence scale was determined.The results obtained give an idea of the influence of the parameter m on the characteristics of the turbulent jet in an ambient stream.  相似文献   

10.
Summary The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) stress growth and relaxation with intermittent shear flow, (ii) stress relaxation after a step in the shear strain and (iii) elastic recovery after shear flow. A large number of modes have been conveniently incorporated through the determination of the model parameters from conventional rheological data by using an effective least-square procedure. With a sufficient number of modes, the predictions are in very good agreement with corresponding experiments in literature, including the recent data for cases (i) and (ii) obtained by optical methods.The present theory agrees also with the Lodge-Meissner relation ( 11 22)/ 12 = 0 in a step-shear experiment. In general, the Leonov model leads to results which, in these test cases, are comparable to those from Wagner's theory. It is, however, considerably less difficult to apply, thus offering the possibility of analysing flow problems of practical interest.With 16 figures and 1 table  相似文献   

11.
Turbulence control in wall-bounded flows by spanwise oscillations   总被引:3,自引:0,他引:3  
The feasibility of control of wall turbulence by high frequency spanwise oscillations is investigated by direct numerical simulations of a planar turbulent channel flow subjected either to an oscillatory spanwise crossflow or to the spanwise oscillatory motion of one of the channel walls. Periods of oscillation,T osc. + =T osc. u 2 /v, ranging from 25 to 500 were studied. For 25<T osc. + <200 production of turbulence is suppressed. The most effective suppression of turbulence occurs atT osc + =100, for which the overall turbulence production is reduced by 62% compared to the unperturbed channel and sustained turbulent drag reductions of 40% are obtained. The suppression of turbulence is due to a continual shift of the near wall streamwise vortices relative to the wall layer streaks, which in turn leads to a widening, merging and weakening of the wall layer streaks and an overall reduction in the turbulence production. The turbulence suppression mechanism observed in these studies opens up new possibilities for effective control of turbulence in wall-bounded flows.  相似文献   

12.
Summary A unique shear stress-shear rate relationship exists for laminar flow of any time independent substance in a tube, whereas this is not the case for turbulent flow. In order to obtain a unique relationship for turbulent flow, a new approach based on the elementary theoretical interpretation of experimental data is adopted in the present paper. In particular, wall shear stress is found to be a unique function of a new turbulent pseudo shear rate term. In this relationship therè are two parameters which characterize a given substance — the limiting viscosity at high shear rateµ m and a factor m which takes into account modification of turbulent structure by the non-Newtonian properties. Both of these parameters must be determined experimentally. Methods of predicting pressure gradients and of scaling up are outlined. In applying the approach to suspensions in which the solid phase has a density greater than that of the liquid medium, it may be important to determine the increment in shear stress equivalent to the energy required to maintain the solid particles in suspension.The validity of this approach is confirmed by data for the flow of a variety of substances including kaolin suspensions and Carbopol solutions in tubes ranging in diameter from 1.5 to 20 mm. Nomenclature C volume fraction solid in suspension - D tube diameter - f Darcy-Weisbach friction factor - g gravitational acceleration - K s proportionality constant defined by eq. [10] - L length of tube - P pressure - Re Reynolds number - t exponent defined by eq. [1] - V mean velocity - V * volume of particles in pipe lengthL - W settling velocity of particles - m factor defined by eq. [1] - shear rate - turbulent pseudo shear rate defined by eqs. [8] and [9] - w wall shear stress - ( w) s increment in wall shear stress due to presence of settling particles - µ m limiting viscosity at high rate of shear - 1 density of carrier liquid - m density of mixture - s density of solid Professor of Chemical Engineering, University of Toronto and scientific advisor to Worthington (Canada) Ltd.With 8 figures  相似文献   

13.
The effect of matrix elasticity on the break-up of an isolated Newtonian drop under step shear flow is herein presented. Constant-viscosity, elastic polymer solutions (Boger fluids) were used as matrix phase. Newtonian silicon oils were used as drop phase. Three viscosity ratios were explored (drop/matrix), i.e. 2, 0.6 and 0.04. Following the theoretical analysis of Greco [Greco F (2002) J Non-Newtonian Fluid Mech 107:111–131], the role of elasticity on drop fluid dynamics was quantified according to the value of the parameter p=/em, where is a constitutive relaxation time of the matrix fluid and em is the emulsion time. Different fluids were prepared in order to have p ranging from 0.1 to 10. At all the viscosity ratios explored, break-up was hindered by matrix elasticity. The start-up transient of drop deformation, at high, but sub-critical capillary numbers, showed an overshoot, during which the drop enhanced its orientation toward the flow direction. Both phenomena increase if the p parameter increases. Finally, the non-dimensional pinch-off length and break-up time were also found to increase with p.This paper was presented at the first Annual European Rheology Conference (AERC) held in Guimarães, Portugal, September 11-13, 2003.  相似文献   

14.
The problem of the constriction resistance of a circular spot on a half-space covered with a uniform layer of different material is considered. For the general case of any specified axisymmetric distributions of temperature over the spot and heat flux over the rest of the surface, the mixed boundary value problem governing the heat flow from the spot to the underlying layer-substrate composite is converted to a non-homogeneous Fredholm integral equation of the second kind. For the particular case of isothermal spot on otherwise insulated surface, the evaluation of the constriction resistance is reduced to the reciprocal of a simple integral with the solution of the relevant integral equation as integrand. The integral equation is solved numerically and very accurate results are obtained for the constriction resistance over four orders of magnitude variation of the ratio, , of layer thickness to spot radius and the ratio, kr, of layer to substrate conductivities for both conducting (kr > 1) and insulating (kr < 1) layers. An extensive discussion of the numerical results is presented with particular emphasis on their implications for the contact resistance of practical joints in the presence of interfacial layers. Further, in the light of the numerical results, two widely used analytical approximations for the constriction resistance – the first of which results from replacing the isothermal condition over the spot by a special flux (herein called the Equivalent Isothermal Heat Flux, EIHF) condition which is believed to render the spot nearly isothermal and the second is a consequence of the assumption (herein termed the Thin Insulating Layer Approximation, TILA) that, for thin insulating layers like oxide films, the heat flow in the layer region right beneath the spot is purely axial – are assessed as to their levels of accuracy and ranges of applicability with respect to both and kr.  相似文献   

15.
Calculations of two types of flows in the initial sections of channels with permeable walls are carried out on the basis of semiempirical turbulence theories during fluid injection only through the walls and during interaction of the external flow with the injected fluid. Experimental studies of the first type [1–3] show that at least within the limits of the lengths L/h<30 and L/a< 50 (2h is the distance between permeable walls of a flat channel anda is the tube radius) the velocity distributions in the laminar and turbulent flow regimes differ little and are nearly self-similar for solutions obtained in [4]. For sufficiently large Reynolds numbers, Re0>100 (Re0=v0h/ or Re0=v0 a/, where v0 is the injection velocity), and small fluid compressibility, the axial velocity component is described by the relations for ideal eddying motion: u=(/2)x× cos (y/2) in a flat channel and u=x cos (y2/2) in atube (the characteristic values for the coordinates are, respectively, h anda). Measurements indicate the existence of a segment of laminar flow; its length depends on the Reynolds number of the injection [3]. In the turbulent regime the maximum generation of turbulent energy occurs significantly farther from the wall than in parallel flow. Flows of the second type in tubes were studied in [5–7]. These studies disclosed that for Reynolds numbers of the flow at the entrance to the porous part of the tube Re=u0 a/<3.103 fluid injection with v0/u0>0.01 leads to suppression of turbu lence in the initial section of the tube. An analogous phenomenon was observed in the boundary layer with v0/u0>0.023 [8, 9]. Laminar-turbulent transition in flows with injection was explained in [10, 11] on the basis of hydrodynamic instability theory, taking into account the non-parallel character of these flows. The mechanisms for the development of turbulence and reverse transition in channels with permeable walls are not theoretically explained. Simple semiempirical turbulence theories apparently are insufficient for this purpose. In the present work results are given of calculations with two-parameter turbulence models proposed in [12, 13] for describing complex flows. Due to the sharp changes of turbulent energy along the channel length, a numerical solution of the complete system of equations of motion was carried out by the finite-difference method [14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 43–48, September–October, 1976.  相似文献   

16.
We give an approximate solution of the heat-transfer equation for equilibrium turbulent boundary layers for which the velocity distribution and the coefficient of turbulent viscosity can be described by functions of two parameters. In [1–4] equilibrium turbulent boundary layers characterized by a constant dimensionless pressure gradient were investigated. The $$\beta = \frac{{\delta ^{* \circ } }}{{\tau _w ^ \circ }}\left( {\frac{{dP}}{{dx^ \circ }}} \right)$$ profile of the velocity defect was calculated in [4] for such layers throughout the whole range ?0.5≤β≤∞, while a method was indicated in [5] for combining the defect velocity profiles with the universal profiles of the wall law, and a composite function defining the coefficient of turbulent viscosity was proposed. In this paper we construct the solution of the heat-transfer equation for equilibrium boundary layers under the assumption that the velocity distribution in the layer and the coefficient of turbulent viscosity are described by functions, obtained in [4, 5], of the dimensionless coordinateη=y/Δ, depending on two parametersβ and Re*, while the turbulent Prandtl number Prt is either constant or is also a known function of η and the parametersβ and Re*. The temperature of the surface Tw(x) is assumed to be an arbitrary function of the longitudinal coordinate and the solution is constructed in the form of series in the form parameters containing the derivatives of Tw(x). These form parameters are similar to those used in [6–9] to construct exact solutions of the equations of the laminar boundary layer.  相似文献   

17.
Summary At higher shear rates the relation between shear stress and shear rate appears to deviate from the for Newtonian fluids expected linear behaviour. In cone-and-plate rheogoniometry one of the most important causes of that is the effect of viscous heating. Accurate measurements carried out with a 10 cm diameter cone and plate lead to a semi-logarithmic, linear relationship between temperature increase and time for a Newtonian oil which dynamic viscosity varies approximately linearly with time. A simple model based on a heat balance describes this behaviour quantitatively.
Zusammenfassung Bei newtonschen Flüssigkeiten weisen die Experimente eine Abweichung vom linearen Zusammenhang zwischen Schubspannung und Schergeschwindigkeit auf. Im Kegel-Platte-Meßsystem ist die Wärmeproduktion durch innere Reibung die wichtigste Ursache der Abweichung. Bei newtonschen Flüssigkeiten, deren dynamische Viskosität sich ungefähr linear mit der Temperatur verändert, ergeben sorgfältig ausgeführte Messungen mit einem Kegel von 10 cm Durchmesser einen linearen Zusammenhang zwischen der Zeit und dem Logarithmus der Temperaturzunahme. Ein aus der Wärmebilanz abgeleitetes Modell vermag dieses Verhalten quantitativ zu beschreiben.

Symbols A platen surface (m2) - B viscosity constant from eq. [1] (Pa s K–1) - S B standard deviation ofB (Pa s K–1) - S t0 standard deviation oft 0 (s) - S t0 standard deviation oft 0 (s) - S 0 standard deviation of 0 (Pa s) - t time (s) - t 0 time def. by eq. [5] (s) - t 0 time def. by eq. [11] (s) - T temperature (°C) - T 0 temperature of the surrounding air (°C) - T highest experimental temperature (°C) - V volume of the fluid between the platen (m3) - W heat capacity of the system (J K–1) - heat transfer coefficient (W m–2 K–1) - shear rate (s–1) - dynamic viscosity (Pa s) - 0 dynamic viscosity atT 0 (Pa s) - dimensionless temperature def. by eq. [4a] (–) - dimensionless time def. by eq. [4b] (–) - dimensionless time def. by eq. [10] (–) With 4 figures and 2 tables  相似文献   

18.
The effect of a pressure wave on the turbulent flow and heat transfer in a rectangular air flow channel has been experimentally studied for fast transients, occurring due to a sudden increase of the main flow by an injection of air through the wall. A fast response measuring technique using a hot film sensor for the heat flux, a hot wire for the velocities and a pressure transducer have been developed. It was found that in the initial part of the transient the heat transfer change is independent of the Reynolds number. For the second part the change in heat transfer depends on thermal boundary layer thickness and thus on the Reynolds number. Results have been compared with a simple numerical turbulent flow and heat transfer model. The main effect on the flow could be well predicted. For the heat transfer a deviation in the initial part of the transient heat transfer has been found. From the turbulence measurements it has been found that a pressure wave does not influence the absolute value of the local turbulent velocity fluctuations. They could be considered to be frozen.Nomenclature A surface area (m2) - D diameter (m) - h heat transfer coefficient (Wm–2 K–1) - p pressure drop (Pa) - P pressure (Pa) - Q heat flow (W) - R tube radius (m) - T bulk temperature (K) - T s surface temperature (K) - t time (s) - u velocity (m/s) - V voltage (V) - y distance from wall (m) - viscosity (N s m–2) - kinematic viscosity (m–2 s–1) - density (kg m–3) - w wall shear stress (N m–2) - Nu Nusselt number - Re Reynolds number  相似文献   

19.
The Lie group, or symmetry approach, developed by Oberlack (see e.g. Oberlack [26] and references therein) is used to derive new scaling laws for various quantities of a zero pressure gradient turbulent boundary layer flow. The approach unifies and extends the work done by Oberlack for the mean velocity of stationary parallel turbulent shear flows. From the two-point correlation (TPC) equations the knowledge of the symmetries allows us to derive a variety of invariant solutions (scaling laws) for turbulent flows, one of which is the new exponential mean velocity profile that is found in the mid-wake region of flat-plate boundary layers. Further, a third scaling group was found in the TPC equations for the one-dimensional turbulent boundary layer. This is in contrast to the Navier–Stokes and Euler equations, which have one and two scaling groups, respectively. The present focus is on the exponential law in the outer region of turbulent boundary layer corresponding new scaling laws for one- and two-point correlation functions. A direct numerical simulation (DNS) of a flat plate turbulent boundary layer with zero pressure gradient was performed at two different Reynolds numbers Re=750,2240. The Navier–Stokes equations were numerically solved using a spectral method with up to 140 million grid points. The results of the numerical simulations are compared with the new scaling laws. TPC functions are presented. The numerical simulation shows good agreement with the theoretical results, however only for a limited range of applicability. PACS 02.20.-a, 47.11.+j, 47.27.Nz, 47.27.Eq  相似文献   

20.
In this paper an efficient split-type Finite-Difference (FD) scheme with high modal resolution – most important for the streamwise convection terms that cause wave transport and interaction – is derived for a mixed Fourier-spectral/FD method that is designed for the spatial direct numerical simulation (DNS) of boundary-layer transition and turbulence. Using a relatively simple but thorough and instructive modal analysis we discuss some principal trouble sources of the related FD discretization. The new scheme is based on a 6th-order compact FD discretization in streamwise and wall-normal direction and the classical 4th-order Runge–Kutta time-integration scheme with symmetrical final corrector step. Exemplary results of a fundamental-(K-) type breakdown simulation of a strongly decelerated Falkner–Skan boundary layer (Hartree parameter H = – 0.18) using 70 mega grid points in space are presented up to the early turbulent regime (Re,turb 820). The adverse pressure gradient gives rise to local separation zones during the breakdown stage and intensifies final breakdown by strong amplification of (background) disturbances thus enabling rapid transition at moderate Reynolds number. The appearance and dynamics of small-scale vortical structures in early turbulence basically similar to the large-scale structures at transition can be observed corroborating Kachanov's hypothesis on the importance of the K-regime of breakdown for coherent structures in turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号