首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bai G  Cao X  Zhang H  Xiang J  Ren H  Tan L  Tang Y 《Journal of chromatography. A》2011,1218(37):6433-6438
G-quadruplex DNA structure is considered to be a very attractive target for antitumor drug design due to its unique role in maintaining telomerase activities. Therefore, discovering ligands with high stability of G-quadruplex structure is of great interest. In this paper, high-performance liquid chromatography (HPLC) was used for fast screening of G-quadruplex ligands from the crude extract of Kalopanax septemlobus (Thunb.) Koidz, a traditional Chinese medicine. Four potent G-quadruplex ligands were firstly selected through HPLC by comparing the peak profiles and absorption intensity of the crude sample before and after interaction with G-quadruplex DNA. Then the target compounds were isolated and purified by high-speed countercurrent chromatography (HSCCC) for further confirmation of their stabilities of G-quadruplex by temperature-dependent circular dichroism (CD). Four compounds were isolated and identified as 2,4-dihydroxybenzoic acid (I), chlorogenic acid (II), caffeic acid (III) and 5-feruloylquinic acid (IV) each by MS and NMR. Finally, compound I, II, III were each proved to be potent G-quadruplex ligands by decreasing the peak intensity in HPLC chromatogram after complexation with G-quadruplex, which stabilize G-quadruplex by 7±2 °C, 10±2 °C, and 3±2 °C respectively, based on CD analyses. However, compound IV showed no G-quadruplex stability. The decrease of peak absorption intensity in HPLC chromatogram is the most important signal to find G-quadruplex ligands. This provides a very promising strategy for fast screening G-quadruplex ligands from natural plant extracts.  相似文献   

2.
G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.  相似文献   

3.
Axial coordination is a crucial biological process to regulate biomolecules’ functions in natural enzymes. However, it is a great challenge to determine the single or dual axial interaction between the metal center of enzymes and the ligand. In this work, a controllable axial coordination system was developed based on G-quadruplex/hemin complex by designing a series of fluorescent derivatives. The mechanism on axial coordination of G-quadruplex/hemin with coumarin-imidazole ligands was proposed to be single-sided, and led to fluorescence quenching of ligands. Upon addition of nitric oxide, the fluorescence of ligands was recovered through competitive axial coordination, providing a “signal on” strategy for signal transduction. More significantly, the fluorescent imaging of intracellular nitric oxide was achieved after conjugating with gold nanoparticles. Also, the proposed protocol provided a smart strategy to monitor the relationship between nitric oxide and p53 protein activity in living cells.  相似文献   

4.
A library of hybrid oxazole–triazole based compounds containing contiguously linked aromatic units were synthesised as G-quadruplex binding ligands. The design of these ligands was based upon combining features of our first generation of G-quadruplex bis-triazole ligands and the natural product telomestatin. The syntheses and biophysical studies of these ligands are described.  相似文献   

5.
The folding of the single-stranded 3' end of the human telomere into G-quadruplex arrangements inhibits the overhang from hybridizing with the RNA template of telomerase and halts telomere maintenance in cancer cells. The ability to thermally stabilize human telomeric DNA as a four-stranded G-quadruplex structure by developing selective small molecule compounds is a therapeutic path to regulating telomerase activity and thereby selectively inhibit cancer cell growth. The development of compounds with the necessary selectivity and affinity to target parallel-stranded G-quadruplex structures has proved particularly challenging to date, relying heavily upon limited structural data. We report here on a structure-based approach to the design of quadruplex-binding ligands to enhance affinity and selectivity for human telomeric DNA. Crystal structures have been determined of complexes between a 22-mer intramolecular human telomeric quadruplex and two potent tetra-substituted naphthalene diimide compounds, functionalized with positively charged N-methyl-piperazine side-chains. These compounds promote parallel-stranded quadruplex topology, binding exclusively to the 3' surface of each quadruplex. There are significant differences between the complexes in terms of ligand mobility and in the interactions with quadruplex grooves. One of the two ligands is markedly less mobile in the crystal complex and is more quadruplex-stabilizing, forming multiple electrostatic/hydrogen bond contacts with quadruplex phosphate groups. The data presented here provides a structural rationale for the biophysical (effects on quadruplex thermal stabilization) and biological data (inhibition of proliferation in cancer cell lines and evidence of in vivo antitumor activity) on compounds in this series and, thus, for the concept of telomere targeting with DNA quadruplex-binding small molecules.  相似文献   

6.
7.
8.
DNA is considered an important target for drug design and development. Until recently, the focus was on double-stranded (duplex) DNA structures. However, it has now been shown that single stranded DNA can fold into hairpin, triplex, i-motif and G-quadruplex structures. The more interesting G-quadruplex DNA structures comprise four strands of stacked guanine (G)-tetrads formed by the coplanar arrangement of four guanines, held together by Hoogsteen bonds. The DNA sequences with potential to form G-quadruplex structures are found at the chromosomal extremities (i.e. the telomeres) and also at the intra-chromosomal region (i.e. oncogenic promoters) in several important oncogenes. The formation of G-quadruplex structures is considered to have important consequences at the cellular level and such structures have been evoked in the control of expression of certain genes involved in carcinogenesis (c-myc, c-kit, K-ras etc.) as well as in the perturbation of telomeric organization. It has been shown that the formation of quadruplexes inhibits the telomere extension by the telomerase enzyme, which is up-regulated in cancer cells. Therefore, G-quadruplex structures are an important target for drug design and development and there is a huge interest in design and development of small molecules (ligands) to target these structures. A large number of so-called G-quadruplex ligands, displaying varying degrees of affinity and more importantly selectivity (i.e. the ability to interact only with quadruplex-DNA and not duplex-DNA), have been reported. Access to efficient and robust in vitro assays is needed to effectively monitor and quantify the G-quadruplex DNA/ligand interactions. This tutorial review provides an overview of G-quadruplex ligands and biophysical techniques available to monitor such interactions.  相似文献   

9.
Inhibition of telomerase activity through stabilizing telomere G-quadruplex with small chemical ligands is emerging as a novel strategy for cancer therapy. For the large number of ligands that have been reported to inhibit telomerase activity, it is difficult to validate the contribution of G-quadruplex stabilization to the overall inhibition. Using a modified telomere repeat amplification protocol (TRAP) method to differentiate the telomere G-quadruplex independent effect from dependent ones, we analyzed several ligands that have high affinity and/or selectivity to telomere G-quadruplex. Our results show that these ligands effectively inhibited telomerase activity in the absence of telomere G-quadruplex. The expected G-quadruplex-dependent inhibition was only obvious for the cationic ligands at low K(+) concentration, but it dramatically decreased at physiological concentration of K(+). These observations demonstrate that the ligands are much more than G-quadruplex stabilizers with a strong G-quadruplex-irrelevant off-target effect. They inhibit telomerase via multiple pathways in which stabilization of telomere G-quadruplex may only make a minor or neglectable contribution under physiologically relevant conditions depending on the stability of telomere G-quadruplex under ligand-free conditions.  相似文献   

10.
DNA G-quadruplexes (G4s) are key structures for the development of targeted anticancer therapies. In this context, ligands selectively interacting with G4s can represent valuable anticancer drugs. Aiming at speeding up the identification of G4-targeting synthetic or natural compounds, we developed an affinity chromatography-based assay, named G-quadruplex on Oligo Affinity Support (G4-OAS), by synthesizing G4-forming sequences on commercially available polystyrene OAS. Then, due to unspecific binding of several hydrophobic ligands on nude OAS, we moved to Controlled Pore Glass (CPG). We thus conceived an ad hoc functionalized, universal support on which both the on-support elongation and deprotection of the G4-forming oligonucleotides can be performed, along with the successive affinity chromatography-based assay, renamed as G-quadruplex on Controlled Pore Glass (G4-CPG) assay. Here we describe these assays and their applications to the screening of several libraries of chemically different putative G4 ligands. Finally, ongoing studies and outlook of our G4-CPG assay are reported.  相似文献   

11.
Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the self-association, G-quadruplex DNA binding, and selectivity of a series of perylene diimides (PDIs) (PIPER, Tel01, Tel11, Tel12, and Tel18) or benzannulated perylene diimide ligands (Tel34 and Tel32). Fluorescence and resonance light scattering spectra of Tel01, Tel12, Tel32, and Tel34 reveal that these analogs undergo self-association in solution. UV-Vis and fluorescence titrations with G-quadruplex, duplex, or single-stranded DNA demonstrate that all the analogs, with the exception of Tel32, bind to G-quadruplex DNA, with those PDIs that are self-associated in solution showing the highest degree of selectivity for binding G-quadruplex DNA. Parallel ESI-MS analysis of the stoichiometries demonstrates the ability of the ligands, with the exception of Tel32, to bind to G-quadruplex DNA. While most ligands show major 1:1 and 2:1 binding stoichiometries as expected in the case of end-stacking, interestingly, three of the most quadruplex-selective ligands show a different behavior. Tel01 forms 3:1 complexes, while Tel12 and Tel32 only form 1:1 complexes. Collisional activation dissociation patterns are compatible with ligand binding to G-quadruplex DNA via stacking on the ends of the terminal G-tetrads. Experiments with duplex and single strand DNA were performed to assess the binding selectivities of the ligands. PIPER, Tel11, and Tel18 demonstrated extensive complexation with duplex DNA, while Tel11 and Tel18 bound to single strand DNA, confirming the lack of selectivity of these two ligands. Our results indicate that Tel01, Tel12, and Tel34 are the most selective for G-quadruplex DNA.  相似文献   

12.
Complexes that bind and stabilize G-quadruplex DNA structures are of significant interest due to their potential to inhibit telomerase and halt tumor cell proliferation. We here report the synthesis of the first Pt(II) G-quadruplex selective molecules, containing pi-extended phenanthroimidazole ligands. Binding studies of these complexes with duplex and quadruplex d(T(4)G(4)T(4))(4) DNA were performed. Intercalation to duplex DNA was established through UV/Vis titration, CD spectroscopy, and thermal denaturation studies. Significantly stronger binding affinity of these phenanthroimidazole Pt(II) complexes to G-quadruplex DNA was observed by UV/Vis spectroscopy and competitive equilibrium dialysis studies. Observed binding constants to quadruplex DNA were nearly two orders of magnitude greater than for duplex DNA. Circular dichroism studies show that an increase in pi-surface leads to a significant increase in the thermal stability of the Pt(II)/quadruplex DNA complex. The match in the pi-surface of these phenanthroimidazole Pt(II) complexes with quadruplex DNA was further substantiated by molecular modeling studies. Numerous favorable pi-stacking interactions with the large aromatic surface of the intermolecular G-quadruplex, and unforeseen hydrogen bonds between the ancillary ethylenediamine ligands and the quadruplex phosphate backbone are predicted. Thus, both biological and computational studies suggest that coupling the square-planar geometry of Pt(II) with pi-extended ligands results in a simple and modular method to create effective G-quadruplex selective binders, which can be readily optimized for use in telomerase-based antitumor therapy.  相似文献   

13.
利用电喷雾质谱(ESI-MS)研究了12种天然产物小分子与人类端粒G-四链体结构的非共价相互作用和识别功能, 比较了不同小分子与人类端粒G-四链体的结合强弱, 发现了一种新的识别小分子——防己诺林碱对人类端粒G-四链体有很好的结合. 通过质谱升温实验比较了小分子结合对G-四链体热稳定性的影响, 防己诺林碱的结合使G-四链体的离子的解离温度(T1/2)上升到200 ℃. 利用分子模拟对G-四链体DNA与小分子结合的模式以及稳定性进行了探讨, 给出了防己诺林碱可能的结合位点和结合模式, Autodock计算出来的结合能约为-31.5 kJ·mol-1. 同原来的平面型分子不同, 防己诺林碱是一类新型结构的分子, 为设计合成新型G-四链体识别分子提供了新的结构模型.  相似文献   

14.
Various biologically relevant G-quadruplex DNA structures offer a platform for therapeutic intervention for altering the gene expression or by halting the function of proteins associated with telomeres. One of the prominent strategies to explore the therapeutic potential of quadruplex DNA structures is by stabilizing them with small molecule ligands. Here we report the synthesis of bisquinolinium and bispyridinium derivatives of 1,8-naphthyridine and their interaction with human telomeric DNA and promoter G-quadruplex forming DNAs. The interactions of ligands with quadruplex forming DNAs were studied by various biophysical, biochemical, and computational methods. Results indicated that bisquinolinium ligands bind tightly and selectively to quadruplex DNAs at low ligand concentration (~0.2-0.4 μM). Furthermore, thermal melting studies revealed that ligands imparted higher stabilization for quadruplex DNA (an increase in the T(m) of up to 21 °C for human telomeric G-quadruplex DNA and >25 °C for promoter G-quadruplex DNAs) than duplex DNA (ΔT(m) ≤ 1.6 °C). Molecular dynamics simulations revealed that the end-stacking binding mode was favored for ligands with low binding free energy. Taken together, the results indicate that the naphthyridine-based ligands with quinolinium and pyridinium side chains form a promising class of quadruplex DNA stabilizing agents having high selectivity for quadruplex DNA structures over duplex DNA structures.  相似文献   

15.
In this contribution, we report that a self-assembled platinum molecular square [Pt(en)(4,4'-dipyridyl)]4 can act as an efficient G-quadruplex binder and telomerase inhibitor. Molecular modeling studies show that the square arrangement of the four bipyridyl ligands, the highly electropositive nature of the overall complex, as well as hydrogen bonding interactions between the ethylenediamine ligands and phosphates of the DNA backbone all contribute to the observed strong binding affinity to the G-quadruplex. Through thermal denaturation studies with duplex and quadruplex FRET probes and enzymatic assays, we demonstrate that this platinum square strongly binds to G-quadruplexes and can act as an inhibitor of telomerase. This study thus shows the potential of supramolecular self-assembly to readily generate scaffolds of unique geometries for effective targeting of G-quadruplexes and for the ultimate development of selective antitumor therapies.  相似文献   

16.
G-quadruplex structures are a new class of attractive targets for DNA-interactive anticancer agents. The primary building block of this structure is the G-quartet, which is composed of four coplanar guanines and serves as the major binding site for small molecules. NMR studies and molecular dynamics simulations have suggested that the planarity of G-quartet surface has been highly dynamic in solution. To better investigate how the planarity of unfused aromatic ligand impacts on its quadruplex binding properties, a variety of planarity controllable isaindigotone derivatives were designed and synthesized. The interaction of G-quadruplex DNA with these designed ligands was systematically explored using a series of biophysical studies. The FRET-melting, SPR, and CD spectroscopy results showed that reducing the planarity of their unfused aromatic core resulted in their decreased binding affinity and stabilization ability for G-quadruplex. NMR studies also suggested that these compounds could stack on the G-quartet surface. Such results are in parallel with subsequent molecular modeling studies. A detailed binding energy analysis indicated that van der Waals energy (ΔE(vdw)) and entropy (TΔS) are responsible for their decreased quadruplex binding and stabilization effect. All these results provided insight information about how quadruplex recognition could be controlled by adjusting the planarity of ligands, which shed light on further development of unfused aromatic molecules as optimal G-quadruplex binding ligands.  相似文献   

17.
Qiao Y  Deng J  Jin Y  Chen G  Wang L 《The Analyst》2012,137(7):1663-1668
The G-rich overhang of human telomere tends to form a G-quadruplex structure, and G-quadruplex formation can effectively inhibit telomerase activity in most cancer cells. Therefore, it is important to identify the formation and properties of the G-quadruplex, with the particular aim of selecting G-quadruplex-binding ligands that could potentially lead to the development of anticancer therapeutic agents. With this goal in mind, we report a fluorescence resonance energy transfer (FRET) assay system for the identification of G-quadruplex ligands using DNA-functionalized gold nanoparticles (DNA-GNPs) as the fluorescence quencher and a carboxyfluorescein (FAM)-tagged human telomeric sequence (F-GDNA) as the recognition probe. A thiolated complementary strand of human telomeric DNA (cDNA), which first adheres to the surface of the GNPs and then hybridizes with F-GDNA, results in the fluorescence quenching of F-GDNA by the GNPs. However, fluorescence is restored when single-stranded F-GDNA folds into a G-quadruplex structure upon the binding of quadruplex ligands, leading to the release of F-GDNA from the surface of the GNPs. Combined data from fluorescence measurements and CD spectroscopy indicated that ligands selected by this FRET method could induce GDNA to form a G-quadruplex. Therefore, this FRET G-quadruplex assay is a simple and effective approach to identify quadruplex-binding ligands, and, as such, it promises to provide a solid foundation for the development of novel anticancer therapeutic agents.  相似文献   

18.
A promising approach for anticancer strategies is the stabilization of telomeric DNA into a G-quadruplex structure. To explore the intrinsic stabilization of folded G-quadruplexes, we combined electrospray ionization mass spectrometry, ion mobility spectrometry, and molecular modeling studies to study different DNA sequences known to form quadruplexes. Two telomeric DNA sequences of different lengths and two DNA sequences derived from the NHE III1 region of the c-myc oncogene (Pu22 and Pu27) were studied. NH4+ and the ligands PIPER, TMPyP4, and the three quinacridines MMQ1, MMQ3, and BOQ1 were complexed with the DNA sequences to determine their effect on the stability of the G-quadruplexes. Our results demonstrate that G-quadruplex intramolecular folds are stabilized by NH4+ cations and the ligands listed. Furthermore, the ligands can be classified according to their ability to stabilize the quadruplexes and end stacking is shown to be the dominant mode for ligand attachment. In all cases our solvent-free experimental observations and theoretical modeling reveal structures that are highly relevant to the solution-phase structures.  相似文献   

19.
Stabilizing the DNA and RNA structures known as G-quadruplexes (G4s) using specific ligands is a strategy that has been proposed to fight cancer. However, although G-quadruplex:ligand (G4:L) interactions have often been investigated, whether or not ligands are able to disrupt G-quadruplex:protein (G4:P) interactions remains poorly studied. In this study, using native mass spectrometry, we have investigated ternary G4:L:P complexes formed by G4s, some of the highest affinity ligands, and the binding domain of the RHAU helicase. Our results suggest that RHAU binds not only preferentially to parallel G4s, but also to free external G-quartets. We also found that, depending on the G4, ligands could prevent the binding of the peptide, either by direct competition for the binding sites (orthosteric inhibition) or by inducing conformational changes (allosteric inhibition). Notably, the ligand Cu–ttpy (ttpy=4′-tolyl-2,2′:6′,2′′-terpyridine) induced a conformational change that increased the binding of the peptide. This study illustrates that it is important to not only characterize drug–target interactions, but also how the binding to other partners is affected.  相似文献   

20.
The interactions between human telomere sequence and a typical highly selective G-quadruplex ligand ThT were studied at the single-molecule level through α-hemolysin protein nanopore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号