首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The history of the development of the theory of neutrino-flavor and neutrino-spin oscillations in electromagnetic fields and in a medium is briefly surveyed. A new Lorentz-invariant approach to describing neutrino oscillations in a medium is formulated in such a way that it makes it possible to consider the motion of a medium at an arbitrary velocity, including relativistic ones. This approach permits studying neutrinospin oscillations under the effect of an arbitrary external electromagnetic field. In particular, it is predicted that, in the field of an electromagnetic wave, new resonances may exist in neutrino oscillations. In the case of spin oscillations in various electromagnetic fields, the concept of a critical magnetic-field-component strength is introduced above which the oscillations become sizable. In considering neutrino oscillations in moving matter, it is shown within the Lorentz-invariant formalism that the relativistic motion of matter significantly affects the character of neutrino oscillations and can radically change the conditions under which the oscillations are resonantly enhanced. Possible new effects in neutrino oscillations are discussed for the case of neutrino propagation in relativistic fluxes of matter.  相似文献   

2.
The present review is focused on the problem of interaction of neutron waves with moving matter. The validity of the 1/v law for ultracold neutrons and the possibility to characterize the interaction of neutrons with matter using the effective potential were verified in the so-called null Fizeau experiments. A neutron wave in such experiments propagates through a flat sample that moves parallel to its edges. The observation of effects caused by this motion provides evidence that the concept of constant effective potential is not correct. The second part of the review deals with the prediction and the first observation of the accelerated matter effect (a change in the energy of neutrons in passing through a refractive sample that moves with an acceleration directed along or opposite the direction of neutron propagation). The characteristic features of this phenomenon in the case of birefringent material are considered. In conclusion, the problem of propagation of neutron waves in matter moving with giant acceleration is discussed.  相似文献   

3.
We generalize our virial approach to study spin-polarized neutron matter and the consistent neutrino response at low densities. In the long-wavelength limit, the virial expansion makes model-independent predictions for the density and spin response, based only on nucleon–nucleon scattering data. Our results for the neutrino response provide constraints for random-phase approximation or other model calculations, and we compare the virial vector and axial response to response functions used in supernova simulations. The virial expansion is suitable to describe matter near the supernova neutrinosphere, and this work extends the virial equation of state to predict neutrino interactions in neutron matter.  相似文献   

4.
A new measurement of the neutrino asymmetry parameter B in neutron decay, the angular correlation between neutron spin and antineutrino momentum, is presented. The result, B=0.9802(50), confirms earlier measurements but features considerably smaller corrections. It agrees with the standard model expectation and permits updated tests on "new physics" in neutron decay.  相似文献   

5.
In the relativistic mean field theory and cooling theories, relativistic correction on neutrino emission from neutron stars in four typical nuclear parameter sets, GM1, GL85, GPS250 and GPS300 is studied. Results show that relativistic effect makes the neutrino emissivity, neutrino luminosity and cooling rate lower, compared with the non-relativistic case. And the influence of relativistic effect grows with the mass of the neutron star. GPS300 set leads to the biggest fall in neutrino emissivity, whereas GM1 set leads to the largest disparity in cooling rate caused by relativistic effect.  相似文献   

6.
Results of experiments aimed at observing the change in the energy of a neutron traversing an accelerated refractive sample are reported. The experiments were performed with ultracold neutrons, the energy transfer in these experiments being ±(2?6) × 10?10 eV. The results suggest the existence of the effect and agree with theoretical predictions to a precision higher than 10%. A similar effect was previously predicted for the change in the frequency of an electromagnetic wave traversing an accelerated dielectric slab. In all probability, the effect has a very general nature, but it is presently observed only in neutron optics.  相似文献   

7.
用相对论平均场下的手征强子模型研究了前中子星内K^-凝聚和超子的生成。结果显示,前中子星内的中微子束缚使得出现K^-凝聚的临界密度推迟到更高的重子密度,而K^-0凝聚无法出现。同时中微子束缚使得前中子星的状态方程变硬,从而前中子星的最大质量变大。如果考虑超子,前中子星内无法出现K^-凝聚,同时系统的状态方程变软(与不含超子的情况相比),从而对应前中子星的最大质量变小。A chiral hadronic model is extended to investigate antikaon condensation and hyperons production of protoneutron stars. Our results show that neutrino trapping makes the critical density of K^- condensation delay to higher density and K^-0 condensation not occur. Meanwhile, the equation of state (EOS) of (proto)neutron star matter considering neutrino trapping is stiffer than the case without neutrino trapping. Therefore the maximum masses of rotoneutron stars with neutrino trapping are larger than those without neutrino trapping. If hyperons are considered, antikaon condensation does not appear in (proto) neutron stars. Meanwhile, the corresponding EOS becomes much softer, and the maximum masses of (proto)neutron stars are smaller than those without hyprons.  相似文献   

8.
左维  李昂  罗陪燕  雍高产 《中国物理 C》2006,30(10):956-960
在Brueckner-Hartree-Fock理论框架内, 研究了新生中子星的状态方程和性质, 计算了新生中子星的最大质量和新生中子星中质子占总核子数的丰度, 特别是讨论了三体核力和中微子束缚效应的影响以及三体核力和中微子束缚效应的相互影响. 结果表明, 无论是否考虑三体核力, 中微子束缚对新生中子星的状态方程和质子丰度均有明显影响. 中微子束缚导致新生中子星物质中的质子丰度显著增大. 三体核力的贡献是使新生中子星的状态方程变硬并导致新生中子星中质子丰度明显增大. 束缚在中子星物质中的中微子显著减弱了三体核力对于中子星物质中质子丰度的影响.  相似文献   

9.
C K Majumdar 《Pramana》1985,25(4):505-512
We discuss limitations of the conventional ‘broken symmetry’ picture of the Heisenberg antiferromagnet. The exact results on the ground state of the linear chain and of the three-dimensional Hamiltonian do not show a ‘degeneracy of the vacuum’. With the help of a solvable model it is shown that the correlations in the ground state may have the Néel character, as revealed by the neutron experiments, even though the ground state is quite different from the Néel states. There is no Goldstone mode in the linear chain. The spin of the antiferromagnetic spin wave is 1/2. But the physical states have a doublet of the spin waves which could be regarded as degenerate states of spin 1 and spin 0. The fermionic character is suppressed and the bosonic character revealed, as in the decolouring phenomena in quantum field theory. It is plausible that in the three-dimensional case also there is no Goldstone mode.  相似文献   

10.
马娟  罗海陆  文双春 《物理学报》2011,60(9):94205-094205
本文研究了光束通过多层介质分界面的光自旋霍尔效应. 以三层介质为例,建立了光束通过棱镜-空气-棱镜结构的传输模型,揭示了横移与空气介质的厚度、折射率梯度以及入射角等因素的定性关系. 发现对某一特定的圆偏振光束,改变两棱镜之间的折射率梯度可以调控横移,反射场与传输场的横移方向取决于折射率梯度. 相对于两层介质来说,高斯光束通过三层介质能明显地增强光自旋霍尔效应. 研究多层介质中光自旋霍尔效应横移的影响因素可为调控和增强光自旋霍尔效应提供理论依据. 关键词: 光自旋霍尔效应 横移 折射率梯度  相似文献   

11.
12.
The idea of the magnetorotational explosion mechanism is that the energy of rotation of the neutron star formed in the course of a collapse is transformed into the energy of an expanding shock wave by means of a magnetic field. In the two-dimensional case, the time of this transformation depends weakly on the initial strength of the poloidal magnetic field because of the development of a magnetorotational instability. Differential rotation leads to the twisting and growth of the toroidal magnetic-field component, which becomes much stronger than the poloidal component. As a result, the development of the instability and an exponential growth of all field components occur. The explosion topology depends on the structure of the magnetic field. In the case where the initial configuration of the magnetic field is close to a dipole configuration, the ejection of matter has a jet character, whereas, in the case of a quadrupole configuration, there arises an equatorial ejection. In either case, the energy release is sufficient for explaining the observed average energy of supernova explosion. Neutrinos are emitted as the collapse and the formation of a rapidly rotating neutron star proceeds. In addition, neutrino radiation arises in the process of magnetorotational explosion owing to additional rotational-energy losses. If the mass of a newborn neutron star exceeds the mass limit for a nonrotating neutron star, then subsequent gradual energy losses may later lead to the formation of a black hole. In that case, the energy carried away by a repeated flash of neutrino radiation increases substantially. In order to explain an interval of 4.5 hours between the two observed neutrino signals from SN 1987A, it is necessary to assume a weakening of the magnetorotional instability and a small initial magnetic field (109?1010 G) in the newly formed rotating neutron star. The existence of a black hole in the SN 1987A remnant could explain the absence of any visible pointlike source at the center of the explosion.  相似文献   

13.
Neutron stars are efficient accelerators for bringing charges up to relativistic energies. We show that if positive ions are accelerated to approximately 1 PeV near the surface of a young neutron star (t(age) less than or nearly 10(5) yr), protons interacting with the star's radiation field produce beamed mu neutrinos with energies of approximately 50 TeV that could produce the brightest neutrino sources at these energies yet proposed. These neutrinos would be coincident with the radio beam, so that, if the star is detected as a radio pulsar, the neutrino beam will sweep the Earth; the star would be a "neutrino pulsar." Looking for nu(mu) emission from young neutron stars will provide a valuable probe of the energetics of the neutron star magnetosphere.  相似文献   

14.
Antikaon condensation and kaon and antikaon production in protoneutron stars are investigated in a chiral hadronic model (also referred to as the FST model in this paper). The effects of neutrino trapping on protoneutron stars are analyzed systematically. It is shown that neutrino trapping makes the critical density of K^- condensation delay to higher density and fifo condensation not occur. The equation of state (EOS) of (proto)neutron star matter with neutrino trapping is stiffer than that without neutrino trapping. As a result, the maximum masses of (proto)neutron stars with neutrino trapping are larger than those without neutrino trapping. If hyperons are taken into account, antikaon does not form a condensate in (proto)neutron stars. Meanwhile, the corresponding EOS becomes much softer, and the maximum masses of (proto)neutron stars are smaller than those without hyprons. Finally, our results illustrate that the Q values for K^+ and K^- production in (proto)neutron stars are not sensitive to neutrino trapping and inclusion of hyperons.  相似文献   

15.
We study the scattering of an electron of a 2DEG through a large point contact separating a region where the electrons are free and a region where the Rashba spin-orbit coupling is present. The scattering depends dramatically on the electron incidence angle showing double refraction within the Rashba region. For incidence not normal to the interface the electron spin state is not conserved. The calculated conductance exhibits an oscillating behavior as a function of spin state of the incident electrons with different spin down and spin up currents. Our model describes both a ferromagnetic semimetallic source and a simple metallic injection electrode. In the first case the electrons are injected in a pure spin state and in the second one they are unpolarized, that is in a statistical mixture of spin up and down states. In both the cases the passage through the large point contact produces spin polarized currents.Received: 30 July 2003, Published online: 23 December 2003PACS: 85.75.Hh Spin polarized field effect transistors - 72.25.-b Spin polarized transport - 73.23.Ad Ballistic transport  相似文献   

16.
The modern state of neutron optics of absorbing media is briefly surveyed. In all probability, there are no physics arguments that would constrain, in the case of strong absorption, the applicability of the commonly accepted Fermi-Foldy dispersion law for neutron waves. In accord with previously known results, it is found that the coefficient of reflection of neutrons from the boundary of a strongly absorbing medium tends to unity with decreasing velocity of neutrons incident on this medium. At low neutron energies peculiar to the case of ultracold neutrons, the complex scattering length for neutron-nucleus interaction proves to be constant, whence it follows that the cross section for neutron capture by a free nucleus obeys the 1/v law. The cross section for the analogous process on nuclei within a medium is described by the 1/v′ law, where v′=?k′/m, with k′ being the real part of the neutron wave number in the medium. As the incident-neutron velocity v decreases, the velocity v′ in a medium tends to some limiting value. From the coefficient of reflection of cold neutrons that is measured as a function of the wavelength and the angle of incidence, a refined value is found for the real part of the scattering length for neutron interaction with gadolinium nuclei. An experiment was performed where ultracold neutrons were transmitted through thin samples containing natural gadolinium. In analyzing the results of this experiment, use was made of the value found here for the real part of the neutron-nucleus scattering length. The experiment indicates that the imaginary part of the scattering length is a constant or, what is the same, that, for neutron velocities ranging from 4 to about 120 m/s, the 1/v law for the cross section for neutron capture by a free nucleus is valid to within 6%.  相似文献   

17.
We model neutrino emission from a newly born neutron star subsequent to a supernova explosion to study its sensitivity to the equation of state, neutrino opacities, and convective instabilities at high baryon density. We find the time period and spatial extent over which convection operates is sensitive to the behavior of the nuclear symmetry energy at and above nuclear density. When convection ends within the protoneutron star, there is a break in the predicted neutrino emission that may be clearly observable.  相似文献   

18.
If massive neutrinos possess magnetic moments, a magnetic field can cause a spin flip. In the case of Dirac neutrinos the spin flip converts an active neutrino into a sterile one and vice versa. By constrast, if neutrinos are Majorana particles, a spin flip converts them to a neutrino of a different flavor. We examine the behavior of neutrinos in a random magnetic field as it occurs, for instance, in certain astronomical objects, such as an active galactic nucleus. Both Dirac and Majorana neutrinos behave ergodically: independently of their initial density matrix, they tend towards an equipartition of the helicity states. As a result, about half of the Dirac neutrinos produced becomes sterile. For Majorana neutrinos, there will be an approximate equipartition of flavors, independently of the production mechanism.  相似文献   

19.
铜氧化物高温超导、铁基高温超导、重费米子超导和κ-型层状有机超导等超导体的超导态都与磁性有序态相邻,且超导能隙在动量空间一般存在变号.因此,这些超导体的超导机理被认为有别于常规BCS超导中的电子交换声子导致的各向同性s-波配对.在这些非常规超导中,自旋涨落被认为是导致电子形成库珀对的主要起源之一.本文主要以铜基和铁基高...  相似文献   

20.
The polarization of neutron spin, target nucleus spin and He nuclear spin was developed at KEK for measuring the T-odd term in polarized neutron transmission through a polarized nuclear target. A method to measure the neutron spin rotation was developed for the T-violation experiment. This apparatus has been found to be quite useful for the P-violating neutron spin rotation experiment. The angular distribution of neutron-capture -rays was measured for the study of the enhancement mechanism of the P-violation. The results are also discussed.On leave from Tohoku University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号