首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of Bi4Ti3O12 multiferroic ceramics prepared by a conventional solid state reaction method were investigated by substituting Ti partly with Fe. The introduction of Fe does not change the layered perovskite structure of Bi4Ti3O12. Upon increasing Fe content, the remnant polarization of the samples is enhanced. The magnetism of the ceramics at room temperature develops from diamagnetism to weak ferromagnetism with increasing Fe doping. The largest variations of 15% and 6% in remnant polarization and magnetization, achieved in a Bi4Ti1Fe2O12?δ sample after poling it in a magnetic field at 1 T and a DC electric field at 30 kV/cm for 10 min, are evidence of magnetoelectric coupling between the electric dipoles and magnetic dipoles at room temperature. The present results suggest a new candidate for a room temperature multiferroic material with enhanced properties.  相似文献   

2.
Thermophysical, magnetic, and dielectric properties of multiferroic BiFeO3 and Bi0.95La0.05FeO3 ceramic compounds were comprehensively studied. Anomalies of the permittivity near an antiferromagnetic phase transition related to the structural variations were detected. The temperature T N was determined from the temperature dependences of the thermal expansion coefficient, heat capacity, and differential susceptibility. It is shown that the transition point is shifted to higher temperatures as the rare-earth La ion substitutes for Bi. It is established that an insignificant substitution of lanthanum for bismuth enhances the magnetic properties of bismuth ferrite and the magnetodielectric effect.  相似文献   

3.
Bi5Ti3FeO15 (BTF) is an example of bifferoic Aurivillius phase with perovskite layered structure. Materials on the basis BTF are of substantial interest for new types of magnetoelectric device applications. In this review we discuss technology of preparation biferroic ceramic with composition Bi5Ti3FeO15. The ferroelectric layered Bi5Ti3FeO15 (BTF) Aurivillius phases were synthesized by solid-phase synthesis reaction from the conventional mixture of oxides, viz. Bi2O3, Fe2O3, TiO2. Thermal analysis and mass change efect were used to investigate synthesis effects in the stoichiometric mixture of powders. The crystalline structure was checked by X-ray diffraction method at room temperature. Microstructure was investigated by scanning electron microscopy.  相似文献   

4.
Aurivillius-structured Bi4.15Nd0.85Ti3FeO15 multiferroic thin films with four perovskite slabs were deposited on Pt/Ti/ SiO2/Si substrates by the metal–organic decomposition method. The structural, dielectric and multiferroic properties of the films were investigated. Good ferroelectric behavior along with large dielectric constant and small loss factor were observed at room temperature. A weak ferromagnetic rather than an antiferromagnetic property was observed at room temperature by magnetic measurement. Moreover, the ferromagnetic property was enhanced when the temperature was below 13 K and a large saturation magnetization of about 5.4 emu/cm3 was obtained at 4 K. Possible reasons are put forward to discuss the complicated magnetic property.  相似文献   

5.
The phase formation, specific features, and the dielectric properties of the ceramics of compositions from the region of morphotropic interface in the (Na0.5Bi0.5)TiO3–BaTiO3 system modified by Bi(Mg0.5Ti0.5)O3 and also low-melting additions KCl, NaCl–LiF, CuO, and MnO2 that favor the control of the stoichiometry and the properties of the ceramics have been studied. The ceramics are characterized by ferroelectric phase transitions that are observed as jumps at temperatures near 400 K and maxima at Tm ~ 600 K in the temperature dependences of the dielectric permittivity. The phase transitions at ~400 K demonstrate the relaxor behavior indicating the existence of polar domains in the nonpolar matrix. An increase in the content of Bi(Mg0.5Ti0.5)O3 favor a decrease in the electrical conductivity and dielectric losses of the samples, and the relative dielectric permittivity at room temperature εrt is retained quite high, achieving the highest values εrt = 1080–1350 in the ceramics modified with KCl.  相似文献   

6.
Multiferroic Bi0.95Sm0.05Fe1−xCoxO3 (x=0−0.1) ceramics were prepared by the rapid liquid phase sintering method. For all the samples studied, the dielectric constant and dielectric loss decrease with increasing frequency in the range from 1 kHz to 1 MHz. It shows that the dielectric constant of Bi0.95Sm0.05FeO3 at 10 kHz is about forty times larger than that of pure BiFeO3. This dramatic change in the dielectric properties of Bi0.95Sm0.05Fe1−xCoxO3 (x=0−0.1) samples can be understood in terms of the space charge limited conduction associated with crystal defects, which was indicated by the increase of magnetoelectric effect with doping Co3+ under applied magnetic field from 1 to 8 kOe. It was believed that the ferroelectric polarization enhancement comes from the exchange interaction between the Sm3+ and Fe3+ or Co3+ ions for Bi0.95Sm0.05Fe0.95Co0.05O3 at room temperature.  相似文献   

7.
Multiferroic materials with two or more types of ferroic orders have attracted a great deal of attention in the last decade for their magnetoelectric coupling, and new ideas and concepts have been explored recently to develop multiferroic materials at nano-scale. Motivated by theoretical analysis, we synthesized single-phase BiFeO3 (BFO) nanofibers, Pb(Zr0.52Ti0.48)O3-CoFe2O4 (PZT-CFO) and Pb(Zr0.52Ti0.48)O3-NiFe2O4 (PZT-NFO) composite nanofibers, and CoFe2O4-Pb(Zr0.52Ti0.48)O3 (CFO-PZT) core-shell nanofibers using sol-gel based electrospinning. These nanofibers typically have diameters in the range of a few hundred nanometers and grain size in the range of 10s nanometers, and exhibits both ferroelectric and ferromagnetic properties. Piezoresponse force microscopy (PFM) based techniques have also been developed to examine the magnetoelectric coupling of the nanofibers, which is estimated to be two orders of magnitude higher than that of thin films, consistent with our theoretical analysis. These nanofibers are promising for a variety of multiferroic applications.  相似文献   

8.
The Ni-Cu-Zn ferrites with different contents of Bi4Ti3O12 ceramics (1-8 wt%) as sintering additives were prepared by the usual ceramic technology and sintered at 900 °C to adapt to the low temperature co-fired ceramic (LTCC) technology. The magnetic and dielectric properties of the ferrite can be effectively improved with the effect of an appropriate amount of Bi4Ti3O12. For all samples, the ferrite sintered with 2 wt% Bi4Ti3O12 has relatively high density (98.8%) and permeability, while the ferrite with 8 wt% Bi4Ti3O12 has relatively good dielectric properties in a wide frequency range. The influences of Bi4Ti3O12 addition on microstructure, magnetic and dielectric properties of the ferrite have been discussed.  相似文献   

9.
Magnetic, magnetoelectric and dielectric properties of multiferroic CoFe2O4–Pb(Fe1/2Nb1/2)O3 composites prepared as bulk ceramics were compared with those of tape cast and cofired laminates consisting of alternate ferrite and relaxor layers. X-ray diffraction analysis and Scanning Electron Microscope observations of ceramic samples revealed two-phase composition and fine grained microstructure with uniformly distributed ferrite and relaxor phases. High and broad maxima of dielectric permittivity attributed to dielectric relaxation were found for ceramic samples measured in a temperature range from −55 to 500 °C at frequencies 10 Hz–2 MHz. Magnetic hysteresis, zero-field cooled (ZFC) and field cooled (FC) curves, and dependencies of magnetization on temperature for both magnetoelectric composites were measured with a vibrating sample magnetometer in an applied magnetic field up to 80 kOe at 4–400 K. The hysteresis loops obtained for composites are typical of a mixture of the hard magnetic material with a significant amount of the paramagnet. The bifurcation of ZFC–FC magnetizations observed for both composites implies spin-glass behavior. Magnetoelectric properties at room temperature were investigated as a function of dc magnetic field (0.3–7.2 kOe) and frequency (10 Hz–10 kHz) of ac magnetic field. Both types of composites exhibit a distinct magnetoelectric effect. Maximum values of magnetoelectric coefficient attained for the layered composites exceed 200 mV/(cm Oe) and are almost three times higher than those for particulate composites.  相似文献   

10.
利用固相反应法在不同烧结温度条件下制备了一系列(Na1/2Bi1/2)Cu3Ti4O12(NBCTO)陶瓷样品,研究了它们的晶体结构、微观组织结构、介电性质和复阻抗及其随温度的变化. 实验发现NBCTO陶瓷所呈现出的电学性质与CaCu3Ti4O12陶瓷相应的电学性质非常类似. 烧结温度为990℃至1060℃范围的NBCTO陶瓷样品室 关键词: 高介电材料 介电性质 复阻抗 内阻挡层电容  相似文献   

11.
A systematic study of magnetoelectric composite system (x) CoFe2O4+(1−x) Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x=0, 0.15, 0.30, 0.45 and 1 was carried out. The lattice strain was calculated using Williamson and Hall equation, which depends on the content of constituent phases in composites. The microstructure was studied using scanning electron microscopy. The ferroelectric transition temperature was independent of the content of individual phases, suggesting that the ferroelectric character is maintained in the composite. Observed PE and MH loops indicate that the multiferroic nature of magnetoelectric ceramics is dependent on the content of individual phases. The variation of magnetostriction with dc magnetic field was studied. The maximum magnetoelectric voltage coefficient of 7.2 mV/cm Oe is obtained for the synthesized composites. The magnetoelectric measurements are well explained with magnetostrictive behavior of the magnetic phase.  相似文献   

12.
Praseodymium doped Bi4Ti3O12 (BIT) ceramics with composition Bi2.9Pr0.9Ti3O12 (BPT) were prepared by solid state reaction. These samples have polycrystalline Bi-layered perovskite structure without preferred orientation, and consist of well-developed plate-like grains with random orientation. Pr doping into BIT causes a large shift of the Curie temperature (TC) of the BIT from 675 to 398 °C. At an electric field of 87 kV/cm, the remanent polarization and the coercive field of the BPT ceramics are 30 μC/cm2 and 52 kV/cm, respectively. Furthermore, the dielectric permittivity and the dissipation factor of the BPT ceramics are 300 and 0.003 at 1 MHz, 1 V, and room temperature. Ferroelectric properties of the BPT ceramics are superior to V-doped Bi4Ti3O12 (∼20 μC/cm2 and 80 kV/cm) and (Sr, Ta)-doped Bi4Ti3O12 (∼12 μC/cm2 and 71 kV/cm) ceramics. In addition, the dense ceramics of praseodymium-doped B4Ti3O12 were obtained by sintering at 1100 °C, about 100-200 °C lower than those of the SrBi2Ta2O9 system.  相似文献   

13.
胡星  王伟  毛翔宇  陈小兵 《物理学报》2010,59(11):8160-8166
采用了传统的固相烧结工艺制备出Bi5Fe1-xCo x Ti3O15(BFCT-x,x=0.0—0.6)多铁陶瓷样品,研究了Co掺杂对Bi5FeTi3O15(BFTO)微观结构、铁电和磁性能的影响.X射线衍射谱显示样品均已形成四层铋系层状钙钛矿相,且随着掺杂量的增加发生了结构变化.拉曼光谱进一步证实掺入的Co占据了< 关键词: 固相烧结 多铁陶瓷 剩余磁化 剩余极化  相似文献   

14.
仲崇贵  蒋青  方靖淮  葛存旺 《物理学报》2009,58(5):3491-3496
实验发现多铁性钙钛矿物质YMnO3和BiMnO3在接近磁有序相变温度时,其介电常数和正切损失会出现异常,这些现象说明在物质的磁性和介电性质之间存在耦合.通过对系统磁性和铁电性之间可能磁电耦合方式的分析,考虑在系统哈密顿量中加入与自旋关联和极化相关的耦合项,对铁电子系统应用软模理论,对磁性运用基于海森伯模型的量子平均场近似,研究了外磁场诱导的极化、介电的变化和外电场诱导的磁化的变化等,并将以上结果与实验进行了比较和分析,较为合理地解释了一些多铁钙钛矿物质中的磁电现 关键词: 多铁 磁电耦合 铁电 铁磁  相似文献   

15.
From magnetic susceptibility, dielectric permittivity, electric polarization and specific heat measurements we discover spin‐induced ferroelectricity and magnetoelectric coupling in Mn3TeO6 and observe two successive magnetic transitions at low temperatures. A non‐ferroelectric intermediate magnetic state occurs below 23 K and a multiferroic ground state emerges below 21 K. Moreover, Mn3TeO6 is a candidate for a multiferroic material where two types of incommensurate spin structures, cycloidal and helical, coexist. Theoretically, both spin substructures may contribute to the macro electric polarization via different mechanisms. This could open new ways of manipulating the ferroelectric polarization in a multiferroic material. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

16.
Results of detailed structural, dielectric, magnetic and magnetoelectric studies of (x)PbZr0.52Ti0.48O3-(1−x)Mn0.3Co0.6Zn0.4Fe1.7O4 composites where x=65, 70, 75 and 80 are shown in this work. Manganese substituted cobalt ferrites are known to exhibit large strain derivative (dx/dH) and on the other hand substitution of Zn in pure cobalt ferrite is known to enhance its permeability μ and permittivity ε. The choice of ferrite as Mn, Zn simultaneously substituted cobalt ferrite (MCZFO) is made keeping in view that for good magnetoelectric (ME) voltage coefficient the magnetostrictive constituent phase of the composite should have large strain derivative (dx/dH) along with large permittivity and permeability. It is shown here that although the dielectric transition temperature changes significantly with change in the mole ratio of the two component phases, magnetic transition temperature (much less compared to the bulk cobalt ferrite) is relatively non-responsive to the changing molar ratio of the two component phases. In the vicinity of the magnetic transition temperature we observed an anomaly in tan δ vs. T plots, which indicates a possible magnetoelectric coupling in the samples. Magnetoelectric voltage coefficient (αE) has been measured using static magnetoelectric method. Highest magnetoelectric voltage coefficient (αE=0.312 mV/cmOe) is obtained for sample 80:20 at HDC=1000 Oe.  相似文献   

17.
《Current Applied Physics》2019,19(12):1391-1398
The structural, magnetic, dielectric and optical properties of Aurivillius Bi6Fe2Ti3O18-based ceramics were investigated in detail. The replacement of Co for Fe/Ti ions obviously varies the grain morphology. Compared with Bi6Fe2Ti3O18 (BFTO) with antiferromagnetic ordering, a spin glass state can be observed in Bi5.25La0.75Fe2Ti3O18 ceramic, while other samples exhibit the ferromagnetic behavior. The specimen Bi6Fe2Ti2(NbCo)0.5O18 (BFTNCO) represents the largest remanent magnetization Mr of 0.93emu/g among all the samples, which can be attributed to the combination of a short lattice parameter c and a large lattice distortion as well as more magnetic ions in a unit cell. The room-temperature dc conductivity of BFTNCO is one order magnitude lower than that of BFTO. In addition, the band gaps of Co-doped samples are about 0.2eV smaller than these of Co-free samples. This work provides a promising path forward to tailor the multiferroic and optical properties in five-layered Aurivillius compounds.  相似文献   

18.
Ba doped Bi1.04−xBaxFeO3 ceramics with x up to 0.30 have been prepared by the tartaric acid modified sol–gel method. The X ray diffraction patterns show that the structure transforms from rhombohedral to tetragonal with increasing the Ba substitution concentration from 10% to 30% and the coexistence of distorted rhombohedral and tetragonal phases in 20% Ba substituted BiFeO3, which was further confirmed by the Raman spectra. Bi0.84Ba0.20FeO3 exhibits the highest magnetization (1.6 emu/g under magnetic field of 12 kOe) compared with the other samples of different Ba substitution concentration. Significant enhancement of the ferroelectricity has been observed in 20% and 30% Ba substituted BiFeO3 with saturate polarization close to 6.6 μC/cm2 for Bi0.74Ba0.30FeO3. The magnetoelectric coupling of Bi0.84Ba0.20FeO3 has been measured and the maximum decrease of magnetization under magnetic field of 9.8 kOe was about 0.06 emu/g with increasing applied electric field to 11 kV/cm, and the magnetoelectric coefficient is 1.5×10−12 s/m.  相似文献   

19.
In this study, Bi4Ti3O12–SrBi4Ti4O15 (BIT–SBTi) intergrowth ferroelectric ceramics was synthesized by a modified oxalate route. The phase formation behaviour, structure, morphology and electrical properties of the intergrowth ceramics were also investigated. The phase formation takes place through intermediate phases like SrBi2O4 and Bi12TiO20. The precursor mostly changes to Bi4Ti3O12 at 600°C and to BIT–SBTi intergrowth at 800°C. Rietveld analysis of the X-ray diffraction pattern showed that the structure of the intergrowth compound was orthorhombic with lattice parameters a = 5.4408(3), b = 5.4505(1) and c = 74.0851(4) Å. The intergrowth ferroelectrics showed a phase transition at 610°C and a frequency-stable permittivity and dielectric loss behaviour. The intergrowth ferroelectrics also showed a larger 2Pr than their constituents BIT and SBTi.  相似文献   

20.
Complex magnetic, magnetoelectric and magnetoelastic studies of spontaneous and field-induced phase transitions in TmMn2O5 were carried out. In the vicinity of spontaneous phase transition temperatures (35 and 25 K) the magnetoelectric and magnetoelastic dependences demonstrated the jumps of polarization and magnetostriction induced by the field ∼150 kOe. These anomalies can be attributed to the influence of magnetic field on the conditions of incommensurate-commensurate phase transition at 35 K and the reverse one at 25 K. In b-axis dependences the magnetic field-induced spin-reorientation phase transition was also observed below 20 K. Finally the magnetoelectric anomaly associated with metamagnetic transition is observed below the temperature of rare-earth subsystem ordering at relatively small critical fields of 5 kOe. This variety of spontaneous and induced phase transitions in RMn2O5 stems from the interplay of three magnetic subsystems: Mn3+, Mn4+, R3+. The comparison with YMn2O5 highlights the role of rare earth in low-temperature region (metamagnetic and spin-reorientation phase transitions), while the phase transition at higher temperatures between incommensurate and commensurate phases should be ascribed to the different temperature dependences of Mn3+ and Mn4+ ions. The strong correlation of magnetoelastic and magnetoelectric properties observed in the whole class of RMn2O5 highlights their multiferroic nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号