首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对光电阵列探测器对色散型光谱仪的光谱分辨极限和波长准确性可能造成的不利影响 ,分别从空域和频域两方面分析了阵列探测器的光敏元中心距、谱线的宽度及谱线与光敏元的相对位置对分辨极限及波长准确性的影响 ,并通过计算机模拟定量地给出了在不同情况下其分辨极限和波长准确性的大小 ,得出了高斯型谱线的宽度小于光敏元中心距的 5倍时 ,光谱仪系统不能同时提高其光谱分辨极限和波长准确性的结论。  相似文献   

2.
光电探测器阵列光敏元宽度对谱线峰值位置影响的研究   总被引:6,自引:1,他引:5  
本文针对采用光电阵列探测器进行信号采集的光谱分析系统,分析了探测器阵列光敏元宽度对光谱峰值定位的影响.指出由于光敏元具有一定宽度,导致非对称型光谱峰值的亚象元定位误差,并提出用反卷积消除这种误差.  相似文献   

3.
吴娜  向阳 《光学技术》2008,34(2):246-248
推导出了静态干涉成像光谱仪的探测器阵列采样空间调制干涉图的实际数学表达式,由此进一步推导出了含像元光敏宽度的复原光谱幅值的一般表达式。分析结果表明,当像元间距一定时,光敏宽度对复原光谱幅值存在影响。对于确定的光敏宽度,随着波数的变长,复原光谱幅值所受到的影响逐渐增大;对于确定的波数,随着光敏宽度的变宽,复原光谱幅值所受到的影响逐步增大。  相似文献   

4.
地物光谱仪测量中的温湿度影响   总被引:1,自引:0,他引:1  
地物光谱仪在遥感领域的应用日益重要,可用于研究不同地物条件下可见和红外的光谱辐射特性,从而获得地表的光谱辐射亮度、光谱辐射照度或方向反射因子等信息。地物光谱特性的准确测量是光学遥感定量分析的基础,对于航天传感器定标、遥感数据反演等具有极其重要的意义。地物光谱仪在测量前必须进行光谱辐射定标,一方面定标过程中地物光谱仪的光谱响应特性可能发生漂移,另一方面测量时的环境与定标环境可能差异较大,都会影响测量的准确性。在恒温恒湿条件下,实验采用谱线灯光源和积分球光源考察了地物光谱仪波长和光谱响应度随探测器温度的变化。数据显示当光谱仪内部硅阵列探测器温度上升时,波长位置并未发生改变;而光谱仪的光谱响应度随着温度上升明显增大。当硅探测器温度从28.3 ℃升至35.2 ℃时,光谱仪在380~990 nm的光谱响应度变化达到1.8%~7.3%;同时近红外1 000~1 800 nm的平均变化约3.0%,2 000~2 500 nm的变化约1.9%。当改变环境温度和湿度时,测量数据表明湿度影响主要在大气中水分子的吸收峰附近波长,对其他波长影响很小;光谱仪光谱响应度与内部探测器的温度近似存在一一对应关系,环境温度的影响可以近似根据内部探测器温度变化予以表征。理论上当环境条件改变时,根据光谱响应度随温度的变化和探测器的监测温度,可以进行光谱数据修正。最后,实验测量了一组探测器温度下对应的光谱响应度,采用多项式拟合和最小二乘法建立了地物光谱仪光谱响应度与温度的函数关系。根据函数关系插值得到的光谱响应度修正因子和直接测量得到的数据基本一致,全谱段的差异几乎都小于0.2%,表明光谱响应度与温度的对应关系可用于解决不同环境条件下的测量准确性。  相似文献   

5.
用于290~450 nm光谱测量的平场光谱仪   总被引:2,自引:0,他引:2  
冯志庆  白兰  李福田 《光学学报》2004,24(3):93-396
介绍了以自扫描光电二极管阵列(SPD)为探测元件的平像场光谱仪。该谱仪采用车尔尼—特纳(Czerny—Turner)正交型结构,光谱分辨力为0.5nm/pixel。介绍了使用标准直流汞灯和标准石英卤素钨灯进行波长定标和辐射定标方法。并利用该平场光谱仪对290~450nm太阳紫外/大气光谱进行了测量,给出了测量结果。讨论了探测器的特性;为抑制温度对测量结果的影响,探测器两端侧某些像元被物理屏蔽,设置其为背景参考像元即哑元,利用哑元进行实时背景扣除方法来抑制温度漂移、暗电流、暗噪声等因素对测量精度的影响。根据仪器结构讨论了狭缝对谱线的影响,给出了狭缝宽度和谱线宽度的对应关系,并对仪器谱面上的相对测量误差进行了分析。  相似文献   

6.
研究了Offner型成像光谱仪消像差结构的参量和性能.用几何法推导出Offner型成像光谱仪的波长使用范围、系统线色散以及光谱分辨率的计算公式;在理想像差条件下,分析了Offner型成像光谱仪光谱分辨率与入射狭缝的宽度、凸面光栅分辨率和探测器像元尺寸各个因素之间的关系;探讨了提高光谱分辨率采用的方法和技术,解决了光谱仪的各个参量和光谱分辨率之间的矛盾.研究表明:当系统像差很小可忽略时,通过减小狭缝宽度,有利于提高光谱分辨率;Offner型成像光谱仪的分辨率由入射狭缝宽度、光栅和CCD像元尺寸三者中分辨本领最低的参量确定.  相似文献   

7.
介绍了一种基于谱线匹配技术的星上光谱定标方法,该定标方法选取大气吸收线作为匹配谱线,采用相关系数法作为匹配结果判定条件标进行光谱定标。为模拟星上定标过程,将谱线匹配技术应用于振动试验后的成像光谱仪,振动试验可以模拟成像光谱仪在升空过程中受到的振动。星上光谱定标包括成像光谱仪分辨率的确定、面阵探测器光谱维和空间维像元中心波长的定标。由定标结果可知,振动试验后光谱仪分辨率为0.40 nm,与振动试验前相比没有发生变化;光谱维像元中心波长向长波偏移0.08 nm(小于一个像元);空间维像元光谱弯曲(光谱smile) 向短波方向弯曲,最大弯曲值为0.96 nm,近似于振动试验前光谱弯曲值。由此验证了谱线匹配技术进行星上光谱定标的可行性。  相似文献   

8.
一般光电探测器的光谱响应是随波长变化的,这在光谱仪器进行波长标定的过程中,可能会改变标定谱线峰值所在的位置,从而影响标定结果的准确度。为此,针对采用阵列探测器的光谱仪器,建立了以高斯线型为标定谱线轮廓的模型,分析了谱线在探测器上经光谱响应调制及积分抽样后峰值位置发生移动的情况,给出了保证在峰值位置不偏移的情况下探测器光谱响应需满足的条件,特别给出了当仪器分光元件为光栅时,在该条件下结合仪器参数的表达式。为保证光谱仪器波长标定的准确度,在仪器设计阶段,可应用此条件选择适宜的探测器;在仪器应用阶段,亦可根据实际探测器参数,应用此条件选择适宜用于标定过程的谱线。  相似文献   

9.
紫外可见偏振成像光谱仪中沃拉斯顿棱镜的色散效应会导致探测器同一空间通道的中心坐标发生偏移,影响目标信号探测精度。根据偏振解调算法,利用沃拉斯顿棱镜出射的两正交分量调制光谱(S光和P光)实现偏振信息解调时,还需要完成光谱匹配。针对这一问题,提出了一种光谱定标与匹配方法。首先利用平行光源标定了仪器视场角与空间维像元的对应关系,提取出各空间通道对应的像元坐标集合并确定了视场定标方程;在同一空间通道内,通过低压汞灯标准光源对波长与像元的对应关系进行标定,得出光谱定标方程;利用视场定标和光谱定标结果完成正交分量光谱的匹配;最后利用太阳光谱中Fraunhofer线的特征波长对定标结果进行了检验。结果表明:紫外可见偏振成像光谱仪正交分量的光谱吸收峰位具有较好的一致性,定标值和标准值的偏差在0.1 nm以内,这验证了定标结果的准确性。  相似文献   

10.
光电探测器参数的选择对色散型光谱仪性能具有重要影响,有必要对光谱仪中光电探测器的离散采样过程进行深入探讨.文章从频率域的角度出发,建立了采样模型,探讨了输入余弦信号的空间频率、光电探测器采样的像元宽度及像元的初始相位对采样结果的影响.引入取整函数,给出了统一的采样调制传递函数表达式,提出并计算了平均采样调制传递函数,消去了初始相位的影响,便于实际应用.对于色散型光谱仪光学系统产生的典型高斯型光谱谱线,将高斯谱线的傅里叶变换与平均采样调制传递函数相乘,得出了光谱仪整系统的调制传递函数表达式.在频率域分析了采样过程的平均混叠误差与空间频率的关系,研究了平均混叠误差极大值与高斯光谱谱线宽度的关系,并给出了要精确恢复谱线所需谱线宽度的阈值.该阈值对于光谱仪系统的光学参数选择有重要的参考意义.  相似文献   

11.
为了标定扫描式棱镜太阳光谱仪的棱镜不同转动角度对应的中心波长和光谱带宽,利用了一种棱镜扫描方法对太阳光谱仪的光谱响应函数进行测量。该方法使用固定的单色光波长,控制棱镜转动实现单色光的像在探测器位置扫描,并通过坐标映射得到响应位置的光谱响应函数。文中根据光谱响应函数的定义,推导出棱镜扫描法与单色仪波长扫描方法波长定标原理上的等效性。之后分别以532 nm固体激光器和632.8 nm氦氖激光器为光源,使用棱镜扫描法测量太阳光谱仪对应波长位置的光谱响应函数,并以单色仪波长扫描法实验作为对比。实验结果表明,对于扫描式棱镜太阳光谱仪,棱镜扫描法测量的中心波长分别为531.86和632.67 nm,其准确度优于单色仪波长扫描法测得的531.39和631.97 nm。由于不受单色仪性能的限制,前者测量的光谱带宽值也优于后者。最后以汞灯为光源使用棱镜扫描法对太阳光谱仪进行了光谱定标实验,实现了特征光谱定标法结合棱镜扫描法对中心波长及光谱带宽的标定。该方法同样可以应用于扫描式光栅光谱仪以及单色仪的光谱定标。  相似文献   

12.
光栅色散型成像光谱仪室内外光谱定标中心波长偏移研究   总被引:1,自引:0,他引:1  
成像光谱仪使用前需要对其进行光谱定标以确定其各光谱通道的中心波长和光谱带宽。但是室内外光谱定标实验结果表明随着使用环境的变化成像光谱仪各通道的中心波长和带宽将发生变化。对光栅色散型成像光谱仪各光谱通道的中心波长室内外定标结果的偏移进行研究,从光栅色散型成像光谱仪的光学结构和工作环境参数出发对造成其中心波长偏移的因素进行分析和建模,对震动、机械形变和浓度等主要影响因素进行理论推导和数量级估算,结合实验结果进行对比分析。理论推导和实验数据分析都表明光栅色散型成像光谱仪室内外光谱定标获得的各通道中心波长的偏移量与各通道的本征波长成二次函数的关系,其中震动和机械形变所带来的系统光路结构的细微改变是造成其中心波长偏移的主要因素,使用环境温度的差异也对该成像光谱仪各光谱通道的中心波长具有一定的影响。  相似文献   

13.
研制了一台高分辨率极紫外光谱仪,用于磁约束等离子体诊断。采用一块具有平场特性的全息球面变线距光栅作为分光元件,光栅公称线密度为1 200 lines·mm-1,掠入射角为3°。一台可深度制冷、背照式面阵CCD作为光谱探测器,用机械快门控制曝光时间。通过CCD在光谱聚焦面的移动,可以记录的光谱范围为5~50 nm。用Penning放电光源测试了光谱仪的性能; 利用光源的标准谱线,进行了波长标定,波长精度为0.003 nm,并计算出系统各参数的实际值;当入缝宽度设置为30 μm时,在20 nm附近,光谱分辨率达0.015 nm,达到设计指标。  相似文献   

14.
短波红外平场光谱仪的波长定标   总被引:4,自引:0,他引:4  
针对自行研制的短波红外平场光谱仪,讨论了波长定标的原理和方法.短波红外平场光谱仪由两个分光探测单元组成,探测单元以平场凹面光栅分光,处于焦平面上的线阵列探测器探测,波长定标分为两个波段进行.为了实现准确的波长定标,针对短波红外平场光谱仪的特点设计了波长定标步骤.双单色仪可以输出光谱仪波长范围内任意波长单色光,选用双单色仪作为光谱定标光源,双单色仪的输出单色光光潜分辨力为1.5 nm,经过光谱仪的分光会聚后成像在线阵列探测器像元上,采用重心法计算出给定波长对应的像元精确位置,通过多项式拟合得出两个探测单元的波长定标系数.定标结果表明,在900~2400 nm波长范围内,定标曲线拟合误差小于0.5 nm,波长定标不确定度优丁0.6 nm.  相似文献   

15.
提出针对线性渐变滤光片型近红外光谱组件的时空域性能改善方法,并通过研制微型化512×2元InGaAs光谱组件,结合多帧数据融合算法完成了实验验证。光谱通道采用基于多次测量的两列相邻光敏元动态组合实现,相比单个大光敏元作为光谱通道,可以改善探测器盲元引起的不良影响。波长标定和测试结果表明,该光谱组件在线性渐变滤光片的分辨率限制下,可以有效减小相邻光谱通道间的波长间隔。  相似文献   

16.
光电探测器对光谱仪器精度的影响   总被引:3,自引:0,他引:3  
通过优化光谱探测环节来提高光谱仪器的精度是改进或研制新型光谱仪的重要途径。为此,文章基于对光电成像系统中光学传递函数的研究,建立了光谱图像经探测器积分抽样后重建的数学模型,并在此基础上分析了光电探测器积分抽样特性参数对光谱线频谱的影响,讨论了光谱线半宽度与探测器积分区间宽度、灵敏度及抽样间隔的关系,提出了准确重建光谱线,提高光谱仪器波长精度和光度精度的探测器优化原则。  相似文献   

17.
光谱定标是确定光谱仪器各通道中心波长的过程,为了获取光谱辐亮度,通常需要对光谱仪器进行辐射定标,将光谱仪器输出的数值,映射为物理量——辐亮度。不同的光谱仪器的光谱响应不同,因此还需要在光谱定标过程中确定各个通道的光谱响应。光谱成像仪可以看成是多个光谱仪组成的,需要对所有点的中心波长和光谱响应进行定标。自第一台成像光谱仪诞生以来,其定标方法逐渐固定,通常需要采用光谱分辨率较光谱成像仪更高的单色仪输出准单色光进行光谱定标,其准单色光的光谱带宽远小于光谱成像仪的光谱响应带宽,可以将准单色光抽象为脉冲函数。根据脉冲函数的特性,改变准单色光的波长,扫描光谱成像仪的响应波长范围,是对光谱响应函数进行间隔采样的过程,通过光谱定标数据可以直接得到光谱成像仪的中心波长和光谱响应函数。随着技术的发展,探测器的灵敏度越来越高,光谱成像仪的分辨率也越来越高,为了完成光谱定标,对光谱定标需要的准单色光提出了更高的要求。然而准单色光的带宽越窄,其能量越低,获取满足信噪比要求的数据需要更长的时间,使定标的效率降低。从光谱定标的目的出发,结合准单色光和光谱成像仪光谱响应近似高斯函数的特点,通过理论分析,提出一种利用宽...  相似文献   

18.
基于微机电系统技术的近红外光谱探测系统已成为了近红外光谱仪研究的一个新方向。文章提出了一种基于光栅光调制器的新型近红外光谱探测系统。该系统采用微加工技术制造的光栅光调制器阵列与单点近红外探测器相结合使用的方法进行光谱探测。设计了该光谱探测系统的光学结构, 论述了系统光谱探测原理, 并使用经表面微加工工艺得到的光栅光调制器器件进行了系统分辨本领、波长准确性、系统稳定性、器件响应频率等特征参数测试实验。结果表明,该探测系统在1 320到1 400 nm波长范围内,分辨本领小于10 nm, 波长准确性小于1 nm, 系统稳定性小于0.5%, 光栅光调制器的响应频率为5kHz。实验结果证明了该近红外光谱探测系统的可行性, 为研制基于微机电系统光栅光调制器的微型化近红外光谱仪提供了理论基础及实验指导。  相似文献   

19.
高光谱分辨率紫外平场光谱仪的研制   总被引:1,自引:0,他引:1  
光栅作为一重要的分光元件,广泛应用于各类光谱仪,其中球面变线距平场光栅以其独特的平场特性使其容易与阵列探测器结合使用,一次实现宽光谱范围的记录。商业球面平场光栅一般只会提供光栅的公称线密度以及相应的安装参数,而不会提供光栅具体的变线距参数,并且提供的安装参数是针对整个使用波段优化的结果。使用者往往只需要其中的一部分波段。针对这种情况,根据球面平场光栅聚焦、分光原理,利用生产厂家提供的光学元件安装参数给出了推导球面变线距光栅变线距参数的方法。并给出了利用这些参数,根据光谱仪的实际工作波段确定最佳的CCD安装位置的方法。根据推导的光栅变线距参数可以对光学系统进行光学追迹已验证光学系统的性能。研制了一台高分辨率紫外平场光谱仪,覆盖光谱范围230~280 nm。采用的球面变线距光栅公称线密度为1 200 lines·mm-1,使用波段为170~500 nm。推导了该光栅的变线距参数,并针对230~280 nm波段对CCD的安装位置进行了优化。同时利用不同元素的标准光源空心阴极灯对光谱仪进行了波长标定和光谱分辨率测试。波长标定采用参数拟合法,整个波段范围内的标定精度优于0.01 nm。光谱分辨率测试的结果表明光谱仪的光谱分辨率达到0.08 nm@280.20 nm。  相似文献   

20.
基于线列光探测器件的光谱仪具有多光谱通道探测的优点,以及其在物质光谱分析中担当的重要角色。分析了基于线列光探测器件光谱仪的波长准确度问题,提出利用激光诱导击穿原子光谱丰富波长校准特征波长谱线的思想。实验选用光谱波长范围为200nm~600nm的凹面光栅光谱仪、2048元焦平面的CCD器件和低压汞灯,分别对铜、铝、镁、钙、硅等5种样品进行了激光诱导击穿光谱试验;利用选取的10条激光诱导原子光谱波长数据并结合低压汞灯的10条特征谱线对光栅光谱仪重新进行波长校准,获取的试验数据有力地证明了这种思想的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号