首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four ligands of 1,3‐bis(4‐pyridyl)propane and two water molecules are coordinated to the zinc(II) atom so that the coordination geometry closely resembles a trans‐N4O2 octahedral environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Single crystals of [Cu(ATSC)]NH2SO3 ( 1 ) (ATSC –4‐allylthiosemicarbazide) were obtained by electrochemical synthesis using alternating current. Compound ( 1 ) crystallizes in P212121 sp. gr., a = 6.8284(2), b = 9.3054(3), c = 16.1576(11) Å, Z = 4. ATSC moiety acts as tetradentate ligand, chelating two symmetrically related copper atoms. The Cu atom possesses trigonal pyramidal coordination, formed by two sulphur atoms (one of them at the apical position), nitrogen atom and C=C bond. Sulfamate anion is associated via hydrogen bonds. By slow hydrolysis of 1 crystals of [Cu2(ATSC)2]SO4 ( 2 ) were obtained: P 1 sp. gr., a = 9.526(2), b = 12.687(2), c = 14.7340(10) Å, α = 95.119(10), β = 89.903(12), γ = 109.113(14)°, Z = 4. The asymmetric unit of 2 contains two formula units, which are related by pseudosymmetry via a glide plane a. One half of four ATSC molecules act as in 1 , the rest as tridentate ligands, which coordinate the two copper atoms in apical positions with sulfate anions. This Cu–S coordination was to date unknown. The structure of the ATSC ligands contributes to the unexpected competitiveness of C=bond in the coordination sphere of CuI inspite of strong donor atoms.  相似文献   

3.
Four novel mononuclear ruthenium(II) complexes [Ru(dmb)2L]2+ [dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, L = imidazo‐[4,5‐f][1,10]phenanthroline (IP), 2‐phenylimidazo‐[4,5‐f][1,10]phenanthroline (PIP), 2‐(4′‐hydroxyphenyl)imidazo‐[4,5‐f] [1,10] phenanthroline (HOP), 2‐(4′‐dimethylaminophenyl) imidazo‐[4, 5‐f] [1,10] phenanthroline (DMNP)] were synthesized and characterized by ES‐MS, 1H NMR, UV‐vis and electrochemistry. The nonlinear optical properties of the ruthenium(II) complexes were investigated by Z‐scan techniques with 12 ns laser pulse at 540 nm, and all of them exhibit both nonlinear optical (NLO) absorption and self‐defocusing effect. The corresponding effective NLO susceptibility |x3| of the complexes is in the range of 2.68 × 10?12‐4.57 × 10?12 esu.  相似文献   

4.
5.
We report the synthesis and X‐ray characterization of the N6‐benzyl‐N6‐methyladenine ligand (L) and three metal complexes, namely [Zn(HL)Cl3]·H2O ( 1 ), [Cd(HL)2Cl4] ( 2 ) and [H2L]2[Cd3(μ‐L)2(μ‐Cl)4Cl6]·3H2O ( 3 ). Complex 1 consists of the 7H‐adenine tautomer protonated at N3 and coordinated to a tetrahedral Zn(II) metal centre through N9. The octahedral Cd(II) in complex 2 is N9‐coordinated to two N6‐benzyl‐N6‐methyladeninium ligands (7H‐tautomer protonated at N3) that occupy apical positions and four chlorido ligands form the basal plane. Compound 3 corresponds to a trinuclear Cd(II) complex, where the central Cd atom is six‐coordinated to two bridging μ‐L and four bridging μ‐Cl ligands. The other two Cd atoms are six‐coordinated to three terminal chlorido ligands, to two bridging μ‐Cl ligands and to the bridging μ‐L through N3. Essentially, the coordination patterns, degree of protonation and tautomeric forms of the nucleobase dominate the solid‐state architectures of 1 – 3 . Additionally, the hydrogen‐bonding interactions produced by the endocyclic N atoms and NH groups stabilize high‐dimensional‐order supramolecular assemblies. Moreover, energetically strong anion–π and lone pair (lp)–π interactions are important in constructing the final solid‐state architectures in 1 – 3 . We have studied the non‐covalent interactions energetically using density functional theory calculations and rationalized the interactions using molecular electrostatic potential surfaces and Bader's theory of atoms in molecules. We have particularly analysed cooperative lp–π and anion–π interactions in 1 and π+–π+ interactions in 3 .  相似文献   

6.
Various nitrile‐functionalized benzimidazol‐2‐ylidene carbene complexes of Hg(II) and Ag(I) were synthesized by the interaction of 1‐benzyl/1‐butyl‐3‐(cyano‐benzyl)‐3 H‐benzimidazol‐1‐ium mono/dihexafluorophosphate with Hg(OAc)2/Ag2O in acetonitrile. Two of the benzimidazolium salts were structurally characterized by single crystal X‐ray diffraction technique. Structures of reported compounds were characterized by 1 H, 13C NMR, FT‐IR, UV–visible spectroscopic techniques, and molar conductivity and elemental analyses. For bis‐benzimidazolium salt, dinuclear Hg(II)– and Ag(I)–carbene complexes were obtained. Nuclease activity and binding interactions of the synthesized benzimidazolium salts and their Ag(I)–carbene complexes with DNA were studied using agarose gel electrophoresis and, absorption spectroscopy and viscosity measurements, respectively. Ag(I)–carbene complexes showed higher DNA binding activity compared to their respective benzimidazolium salts. However, a benzimidazolium salt and two of the Ag(I) complexes showed remarkably higher nuclease activity both, in the presence and absence of an oxidizing agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Synthesis and Structure of (NH4)2[(AuI4)(AuI22-I4))], a Iodoaurate(III) with I42? Anions as Ligands (NH4)2[(AuI4)(AuI22-I4))] is obtained in a sealed glass ampoule by slow cooling of a mixture of NH4I, Au, and I2 beforehand heated to 500°C. The compound forms black crystals decomposing slowly under loss of I2. It crystallizes in the orthorhombic space group Pnma with a = 1357.7(1), b = 2169.9(2), c = 755.6(3) pm, and Z = 4. The crystal structure is built up by NH cations and square-planar [AuI4]? anions as well as [AuI22-I4)]? groups being linked together by the I ligands to form chains. The distances Au? I are in the range of 258.7(2) to 262.4(2) pm. The nearly linear I anions are characterized by a short central I? I distance of 270.9(3) pm and two longer outer distances of 338.7(2) pm.  相似文献   

8.
The title compound, [Sr7(C7H3NO4)6(SO4)(H2O)6]n, has been synthesized by an ionothermal method using the ionic liquid 1‐ethyl‐3‐methylimidazolium ([Emim]Br) as solvent, and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR and single‐crystal X‐ray diffraction. The structure of the compound can be viewed as a three‐dimensional coordination polymer composed of Sr2+ cations, pyridine‐2,6‐dicarboxylate anions, sulfate anions and water molecules. The compound not only exhibits a three‐dimensional structure with a unique coordination mode of the sulfate anion, but also features the first example of a heptanuclear strontium(II) coordination polymer. The structure is further stabilized by O—H...O hydrogen bonds and π–π stacking interactions.  相似文献   

9.
Only a few cyclooctatetraene dianion (COT) π‐complexes of lanthanides have been crystallographically characterized. This first single‐crystal X‐ray diffraction characterization of a scandium(III) COT chloride complex, namely di‐μ‐chlorido‐bis[(η8‐cyclooctatetraene)(tetrahydrofuran‐κO )scandium(III)], [Sc2(C8H8)2Cl2(C4H8O)2] or [Sc(COT)Cl(THF)]2 (THF is tetrahydrofuran), (1), reveals a dimeric molecular structure with symmetric chloride bridges [average Sc—Cl = 2.5972 (7) Å] and a η8‐bound COT ligand. The COT ring is planar, with an average C—C bond length of 1.399 (3) Å. The Sc—C bond lengths range from 2.417 (2) to 2.438 (2) Å [average 2.427 (2) Å]. Direct comparison of (1) with the known lanthanide (Ln) analogues (La, Ce, Pr, Nd, and Sm) illustrates the effect of metal‐ion (M ) size on molecular structure. Overall, the M —Cl, M —O, and M —C bond lengths in (1) are the shortest in the series. In addition, only one THF molecule completes the coordination environment of the small ScIII ion, in contrast to the previously reported dinuclear Ln–COT–Cl complexes, which all have two bound THF molecules per metal atom.  相似文献   

10.
The platina‐β‐diketones [Pt2{(COR)2H}2(μ‐Cl)2] ( 1 , R = Me a , Et b ) react with phosphines L in a molar ratio of 1 : 4 through cleavage of acetaldehyde to give acylplatinum(II) complexes trans‐[Pt(COR)Cl(L)2] ( 2 ) (R/L = Me/P(p‐FC6H4)3 a , Me/P(p‐CH2=CHC6H4)Ph2 b , Me/P(n‐Bu)3 c , Et/P(p‐MeOC6H4)3 d ). 1 a reacts with Ph2As(CH2)2PPh2 (dadpe) in a molar ratio of 1 : 2 through cleavage of acetaldehyde yielding [Pt(COMe)Cl(dadpe)] ( 3 a ) (configuration index: SP‐4‐4) and [Pt(COMe)Cl(dadpe)] (configuration index: SP‐4‐2) ( 3 b ) in a ratio of about 9 : 1. All acyl complexes were characterized by 1H, 13C and 31P NMR spectroscopy. The molecular structures of 2 a and 3 a were determined by single‐crystal X‐ray diffraction. The geometries at the platinum centers are close to square planar. In both complexes the plane of the acyl ligand is nearly perpendicular to the plane of the complex (88(2)° 2 a , 81.2(5)° 3 a ).  相似文献   

11.
A complex of formula [Ni(pobb)2](pic)2, (pobb = 1,3‐bis(1‐propylbenzimidazol‐2‐yl)‐2‐oxapropane, pic = 2,4,6‐trinitrophenol), has been synthesized and structurally characterized by physico‐chemical and spectroscopic methods. The crystals crystallize in the monoclinic system, space group C2/c, a = 25.766(11) Å, b = 14.943(7) Å, c = 19.543(14) Å, α = 90°, β = 129.722(4)°, γ = 90°, Z = 4. The coordination environment around nickel(II) atom can be described as a distorted octahedral geometry. The interactions of the ligand pobb and the nickel (II) complex with calf thymus DNA (CT‐DNA) are investigated by using electronic absorption titration, ethidium bromide‐DNA displacement experiments and viscosity measurements. The experimental evidence indicated the compounds interact with calf thymus DNA through intercalation.  相似文献   

12.
Three new μ‐oxamido‐bridged heterodinuclear copper (II)‐chromium (III) complexes formulated [Cu(Me2oxpn)Cr‐(L)2](NO3)3, where Me2oxpn denotes N,N'‐bis(3‐amino‐2, 2‐dimethylpropyl)oxamido dianion and L represents 5‐methyl‐1,10‐phenanthroline (Mephen), 4,7‐diphenyl‐1,10‐phenanthroline (Ph2phen) or 2,2′‐bipyridine (bpy), have been synthesized and characterized by elemental analyses, IR and electronic spectral studies, magnetic moments of room‐temperature and molar conductivity measurements. It is proposed that these complexes have oxamido‐bridged structures consisting of planar copper (II) and octahedral chromium (III) ions. The variable temperature magnetic susceptibilities (4.2–300 K) of complexes [Cu(Me2oxpn)Cr(Ph2phen)2](NO3)3 (1) and [Cu(Me2oxpn)Cr(Mephen)2] (NO3)3 (2) were further measured and studied, demonstrating the ferromagnetic interaction between the adjacent chromium (III) and copper (II) ions through the oxamido‐bridge in both complexes 1 and 2. Based on the spin Hamiltonian, ? = ‐ 2J?1 · ?2, the exchange integrals J were evaluated as + 21.5 an?1 for 1 and + 22.8 cm?1 for 2.  相似文献   

13.
FeI centers in iron–sulfide complexes have little precedent in synthetic chemistry despite a growing interest in the possible role of unusually low valent iron in metalloenzymes that feature iron–sulfur clusters. A series of three diiron [(L3Fe)2(μ‐S)] complexes that were isolated and characterized in the low‐valent oxidation states FeII? S? FeII, FeII? S? FeI, and FeI? S? FeI is described. This family of iron sulfides constitutes a unique redox series comprising three nearly isostructural but electronically distinct Fe2(μ‐S) species. Combined structural, magnetic, and spectroscopic studies provided strong evidence that the pseudotetrahedral iron centers undergo a transition to low‐spin S=1/2 states upon reduction from FeII to FeI. The possibility of accessing low‐spin, pseudotetrahedral FeI sites compatible with S2? as a ligand was previously unknown.  相似文献   

14.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

15.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

16.
The molecular structures of binuclear copper(II) complexes [Cu2REP(μ-OH)(ClO4)2] (4) and [Cu2REP(μ-Cl)Cl2] (5), in which REP = deprotonated 2,6-bis(1′-(4′-(2″-pyridyl)-2′-thiabutyl))-4-methylphenol, have been characterized by single-crystal X-ray diffraction. The former crystallizes in the triclinic space group Pl? with a = 10.156(3), b = 12.631(3), c = 25.128(10) Å, α = 92.03(3), β = 96.84(3), γ = 108.02(2),° and Z ? 2. Complex 5 crystallizes in the monoclinic space group C2/c with a = 12.166(2), b = 11.825(2), c = 18.240(4) Å, β = 100.97(2)°, and Z =4. All copper ions are pentacoordinated with ligation to a sulfur, a nitrogen, and the bridging phenolato oxygen of the REP ligand, the exogenous bridge, and a counteranion. The coordination geometry of each copper of the binuclear copper sites is square pyramidal in both 4 and 5. Magnetic susceptibility measurements in the temperature range 6–300 K reveal a strong antiferromagnetic spin exchange in 5 (exchange integral 2J = ?460 cm?1). A diamagnetic behavior is observed for 4 according to a similar cryomagnetic investigation. The diamagnetism of 4 is further confirmed by measurements of magnetic susceptibility through Evan's method at room temperature. Complex 4 has no EPR signal. The powder EPR spectrum of 5 shows the typical triplet state characteristics with Δm = ±1 transitions at g = 2.15 and a weaker Δm = 2 transition at half field with g = 4.24.  相似文献   

17.
(PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] – a Nitrido‐Thionitrosyl‐Dinitridosulfato‐Complex of Rhenium The title compound has been prepared from PPh4[ReVIICl4(NSCl)2] with excess N(SiMe3)3 in dichloromethane solution to give red‐brown single crystals after recrystallisation from acetonitrile/THF solutions. As a by‐product PPh4[ReNCl4] is formed. (PPh4)2[(SN)ReCl3(μ‐N)(μ‐NSN)ReCl3(THF)] ( 1 ): Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 1024.1(1), b = 2350.2(1), c = 2315.4(2) pm, β = 94.09(1)°, R1 = 0.0403. In the complex anion of 1 the rhenium atoms are connected by an asymmetric Re≡N–Re bridge as well as by a (NSN)4–‐bridge to form a planar Re2N(NSN) six‐membered heterocycle. Both rhenium atoms are coordinated by three chlorine atoms, one of them by a thionitrosyl ligand, the other one by the oxygen atom of a thf molecule.  相似文献   

18.
Two manganese(II) bipyridine carboxylate complexes, [(bipy)2MnII(μ‐C2H5CO2)2MnII(bipy)2}2](ClO4)2 ( 1 ), and [MnII(ClCH2CO2)(H2O)(bipy)2]ClO4 · H2O ( 2 ) were prepared. 1 crystallizes in the triclinic space group P 1 with a = 8.604(3), b = 12.062(3), c = 13.471(3) Å, α = 112.47(2), β = 93.86(2), γ = 92.87(3)°, V = 1211.1(6) Å3 and Z = 1. In the dimeric, cationic complex with a crystallographic center of symmetry two 2,2′‐bipyridine molecules chelate each manganese atom. These two metal fragments are then bridged by two propionato groups in a syn‐anti conformation. The Mn…Mn distance is 4.653 Å. 2 crystallizes in the monoclinic space group P21/c with a = 9.042(1), b = 13.891(1), c = 21.022(3) Å, β = 102.00(1)°, V = 2569.3(5) Å3 and Z = 4. 2  is a monomeric cationic complex in which two bipyridine ligands chelate the manganese atom in a cis fashion. A chloroacetato and an aqua ligand complete the six‐coordination. Only in 2 is the intermolecular packing controlled by weak π‐stacking besides C–H…π contacts between the bipyridine ligands.  相似文献   

19.
By means of ultraviolet and visible spectroscopy we have studied the catecholase activity of two binuclear copper(II) complexes of general formula [Cu2REP(u-X)(Y)2] (1, X=OH and Y=ClO4; 2, X=Y=CI), REP =deprotonated 2, 6-bis(1′-(4′-(2″-pyridyl)-2′-thiabutyl))-4-methylphenol. Both complexes promote catalytic autoxidation of 3, 5-di-tert-butylcatechol (3, 5-DTBC) to 3, 5-di-tert-butylquinone (3, 5-DTBQ) in methanol, but not in acetonitrile.  相似文献   

20.
Molybdenum and Tungsten Complexes with MNS Sequences. Crystal Structures of [MoCl3(N3S2)(1,4‐dioxane)2] and [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 The cyclo‐thiazeno complexes [Cl3MNSNSN]2 of molybdenum and tungsten react with 1,4‐dioxane in dichloromethane suspension to give the binuclear donor‐acceptor complexes [μ‐(1,4‐dioxane){MCl3(N3S2)}2] which are characterized by IR spectroscopy. With excess 1,4‐dioxane the molybdenum compound forms the complex [MoCl3(N3S2)(1,4‐dioxane)2] in which, according to the crystal structure determination, one of the dioxane molecules coordinates at the molybdenum atom, the other one at one of the sulfur atoms of the cyclo‐thiazeno ring. The μ‐(NSN2–) complex [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 has been obtained by the reaction of [MoN(OCMe3)3] with trithiazyle chloride in carbontetrachloride solution. According to the crystal structure determination this compound forms centrosymmetric dimeric molecules via two of the nitrogen atoms of two of the μ‐(NSN) groups to give a Mo2N2 fourmembered ring. [MoCl3(N3S2)(1,4‐dioxane)2]: Space group P21/c, Z = 4, lattice dimensions at –70 °C: a = 1522.9(2); b = 990.3(1); c = 1161.7(1) pm; β = 106.31(1)°, R1 = 0.0317. [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 · 4 CCl4: Space group P21/c, Z = 2, lattice dimensions at –83 °C: a = 1216.7(1); b = 2193.1(2); c = 1321.8(1) pm; β = 98.23(1)°; R1 = 0.0507.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号