首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collisionally activated dissociation (CAD) spectra of protonated molecules of cyclopeptides and cyclodepsipeptides obtained with two different mass spectrometry systems were compared. Fragmentations were obtained either from collisions induced in the ion source of an electrospray mass spectrometer fitted with a single quadrupole by increasing the extracting cone voltage or from collisions with an inert gas in a free-field area of a fast-atom bombardment (FAB) mass spectrometer. Similar fragmentation pathways were produced with the two configurations even though actual tandem mass spectrometry experiments with magnetic and electric sectors provided more information than cone-induced dissociations. However, only the latter mode allowed us to perform mass spectrometric analyses coupled to liquid chromatography (LC/ESI-MS) at low cost on commercially widespread instruments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The loss of internal monosaccharide residues from anthracycline aminodisaccharides has been studied using high and low energy collisionally activated dissociations (CAD). The mass spectra and low energy CAD spectra obtained using electrospray ionization on a quadrupole mass spectrometer were consistent with a structure in which positions of the two monosaccharide residues were reversed. Key fragment ions observed in the product ion spectra of the peracetylated derivative and the deuterated analog were used to provide evidence that a rearrangement process had occurred. Mass-analyzed ion kinetic energy spectrometry data were also consistent with a rearrangement.  相似文献   

4.
A new method for tissue imaging using desorption electrospray ionization (DESI) mass spectrometry is described. The technique utilizes a DESI source with a heated nebulizing gas and high‐resolution accurate mass data acquired with an LTQ‐Orbitrap mass spectrometer. The two‐dimensional (2D) automated DESI ion source creates images using the ions that are collected under high‐resolution conditions. The use of high‐resolution mass detection significantly improves the image quality due to exclusion of interfering ions. The use of a heated nebulizing gas increases the signal intensity observed at lower gas pressure. The technique developed is highly compatible with soft tissue imaging due to the minimal surface destruction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A new factor causing the superposability of collisionally activated decomposition spectra of ions to fail has been established for isobaric ions. If the two isobaric ion beams are not transmitted in their entirety simultaneously to the collision cell, the resulting spectrum is not a linear combination of the two spectra of the individually transmitted complete ion beams. Apparently the energy content of collimated ions varies across the ion beam, so that transmission of different portions of the ion beam produces samples of ions with different energy contents.  相似文献   

6.
7.
Electron capture dissociation (ECD) of doubly protonated hyperbranched polyesteramide oligomers (1100-1900 Da) was examined and compared with the structural information obtained by low energy collisionally activated dissociation (CAD). Both the ester and amide bonds of the protonated species were cleaved easily upon ECD with the formation of odd electron (OE(.+)) or even electron (EE(+)) fragment ions. Several mechanistic schemes are proposed that describe the complex ECD fragmentation behavior of the multiply charged oligomers. In contrast to studies of biomolecules, the present results indicate that consecutive cleavages induced by intramolecular H-shifts are significant for ECD and of less importance for low energy CAD. The capture of an electron by the ionized species results in fragmentation associated with a redistribution of the excess internal energy over the products and the subsequent bond cleavage. Low energy, multiple collision CAD is found to be a more selective dissociation method than ECD in view of the observation that only amide bonds are cleaved for most of the hyperbranched polymers examined with CAD in this study. ECD appears not to provide complementary structural information compared to CAD in the study of hyperbranched polymers, even though a significantly more complex ECD fragmentation behavior is observed. ECD is shown to be of use for the structural characterization of large oligomers that may not dissociate upon low energy CAD. This is a direct result of the fact that ECD produces ionized hyperbranched oligomers with a relatively high internal energy.  相似文献   

8.
This paper describes the formation of protonated molecules ([M + H]+) and adduct ions by self-ion-molecule reactions (SIMR) during collisionally activated decomposition (CAD) of methyne addition ions ([M + CH]+) produced from chemical ionization (CI) or SIMR in both an external and internal source ion-trap mass spectrometer (ITMS). The CAD results for the methyne addition ions of dopamine produced from both SIMR and dimethyl ether CI undertaken in the external and internal source ITMS were compared in order to prove the occurrence of SIMR during CAD processes. Compared with the external source ITMS, the internal source ITMS is much more easily applicable to this type of reaction owing to the large population of neutral analytes present in the trap.  相似文献   

9.
In‐source collision‐induced dissociation (CID) is commonly used with single‐stage high‐resolution mass spectrometers to gather both a molecular formula and structural information through the collisional activation of analytes with residual background gas in the source region of the mass spectrometer. However, unlike tandem mass spectrometry, in‐source CID does not involve an isolation step prior to collisional activation leading to a product ion spectrum composed of fragment ions from any analyte present during the activation event. This work provides the first comparison of in‐source CID and beam‐type CID spectra of emerging synthetic drugs on the same instrument to understand the fragmentation differences between the two techniques and to contribute to the scientific foundations of in‐source CID. Electrospray ionization–quadrupole time‐of‐flight (ESI‐Q‐TOF) mass spectrometry was used to generate product ion spectra from in‐source CID and beam‐type CID for a series of well‐characterized fentanyl analogs and synthetic cathinones. A comparison between the fragmentation patterns and relative ion abundances for each technique was performed over a range of fragmentor offset voltages for in‐source CID and a range of collision energies for beam‐type CID. The results indicate that large fragmentor potentials for in‐source CID tend to favor higher energy fragmentation pathways that result in both kinetically favored pathways and consecutive neutral losses, both of which produce more abundant lower mass product ions relative to beam‐type CID. Although conditions can be found in which in‐source CID and beam‐type CID provide similar overall spectra, the in‐source CID spectra tend to contain elevated noise and additional chemical background peaks relative to beam‐type CID.  相似文献   

10.
11.
Interest in mass spectrometry of highly oxidized dimers from α‐pinene oxidation has increased in the atmospheric chemistry field. Here, we apply high‐resolution collision‐induced dissociation mass spectrometry (HR‐CID‐MS) with an atmospheric pressure ionization source to investigate in detail how α‐pinene‐derived dimers are detected and identified by MS. The resulting HR‐CID spectra and specific fragmentation patterns suggest that a large fraction of dimer ions detected in full‐scan mass spectra can be hydrogen‐bonded artifact clusters and the residual small fraction includes covalently bonded actual dimers. We also show how individual fractions of the artifact clusters and actual dimers are calculated using the HR‐CID spectra.  相似文献   

12.
13.
Process improvements in the synthesis of therapeutic agents and their intermediates are often facilitated by identification of reaction by-products. Analysis by liquid chromatography/mass spectrometry (LC/MS) with electrospray ionization is a powerful approach for obtaining molecular weight information for these compounds. Such analyses are well suited for 'open-access' mass spectrometry using generic chromatographic conditions, provided spectral interpretation for unknown compounds is facile. We have developed a software application (MassAssign) that facilitates automated data processing and molecular weight assignment for chromatographic peaks detected by any standard ultraviolet-visible wavelength detector. The program assigns [M + H](+) ions (and thus molecular weight) in the mass spectra using predetermined criteria. This evaluation process differentiates [M + H](+) ions from other signals in a complex mass spectrum such as those resulting from chromatographic coelution or the presence of multiple species (i.e., fragment ions, singly charged ions, doubly charged ions, adduct ions, proton-bound dimers, etc.). Once the program has evaluated all ions in a mass spectrum that exceed a preset abundance threshold, MassAssign reports either a numeric value-indicating the chromatographic peak consists of a single component having the displayed molecular weight, 'MC'-indicating the peak consisted of multiple components, or 'ND'-that a molecular weight could not be determined unequivocally. The performance of the program was evaluated by comparing mass assignments made by MassAssign against manual interpretation for 55 samples analyzed by positive electrospray ionization using a generic HPLC method. Correct molecular weight assignments were obtained in 90% of the cases.  相似文献   

14.
The quantitative capabilities of a linear ion trap high‐resolution mass spectrometer (LTQ‐Orbitrap™) were investigated using full scan mode bracketing the m/z range of the ions of interest and utilizing a mass resolution (mass/FWHM) of 15000. Extracted ion chromatograms using a mass window of ±5–10 mmu centering on the theoretical m/z of each analyte were generated and used for quantitation. The quantitative performance of the LTQ‐Orbitrap™ was compared with that of a triple quadrupole (API 4000) operating using selected reaction monitoring (SRM) detection. Comparable assay precision, accuracy, linearity and sensitivity were observed for both approaches. The concentrations of actual study samples from 15 Merck drug candidates reported by the two methods were statistically equivalent. Unlike SRM being a tandem mass spectrometric (MS/MS)‐based detection method, a high resolution mass spectrometer operated in full scan does not need MS/MS optimization. This approach not only provides quantitative results for compounds of interest, but also will afford data on other analytes present in the sample. An example of the identification of a major circulating metabolite for a preclinical development study is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The use of orthogonal acceleration quadrupole time-of-flight (Q-TOF) mass spectrometry to determine the collisionally activated dissociation (CAD) of a test compound 1-(3-[5-[1,2,4-triazol-4-yl]-1H-indol-3-yl]propyl)-4-(2-[3-fluorophenyl]ethyl)piperazine is described. At unit-mass resolution the identity of many ions is ambiguous because of the complexity of the resulting product ion spectrum. Using the high resolution capabilities of the Q-TOF instrument, exact masses for each fragment were determined. These data were used to infer molecular formulas for each fragment through software interpretation and, by further applying chemical intuition, the majority of ions were fully assigned. Additionally, by utilizing in-source fragmentation at high cone voltage, analyses of second-generation products allowed derivation of a consistent sequential fragmentation pathway. This study clearly demonstrates the power of Q-TOF mass spectrometry to elucidate complex product ion spectra.  相似文献   

16.
17.
18.
Collision‐induced dissociation (CID) mass spectra of differently substituted glucosinolates were investigated under negative‐ion mode. Data obtained from several glucosinolates and their isotopologues (34S and 2H) revealed that many peaks observed are independent of the nature of the substituent group. For example, all investigated glucosinolate anions fragment to produce a product ion observed at m/z 195 for the thioglucose anion, which further dissociates via an ion/neutral complex to give two peaks at m/z 75 and 119. The other product ions observed at m/z 80, 96 and 97 are characteristic for the sulfate moiety. The peaks at m/z 259 and 275 have been attributed previously to glucose 1‐sulfate anion and 1‐thioglucose 2‐sulfate anion, respectively. However, based on our tandem mass spectrometric experiments, we propose that the peak at m/z 275 represents the glucose 1‐thiosulfate anion. In addition to the common peaks, the spectrum of phenyl glucosinolate (β‐D ‐Glucopyranose, 1‐thio‐, 1‐[N‐(sulfooxy)benzenecarboximidate] shows a substituent‐group‐specific peak at m/z 152 for C6H5‐C(?NOH)S?, the CID spectrum of which was indistinguishable from that of the anion of synthetic benzothiohydroxamic acid. Similarly, the m/z 201 peak in the spectrum of phenyl glucosinolate was attributed to C6H5‐C(?S)OSO2?. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A computational technique is presented for the automated assignment of the multiple charge and multimer states (ionization states) in the time‐of‐flight (TOF) domain for matrix‐assisted laser desorption/ionization (MALDI) spectra. Examples of the application of this technique include an improved, automatic calibration over the 2 to 70 kDa mass range and a reduced data redundancy after reconstruction of the molecular spectrum of only singly charged monomers. This method builds on our previously reported enhancement of broad‐mass signal detection, and includes two steps: (1) an automated correction of the instrumental acquisition initial time delay, and (2) a recursive TOF detection of multiple charge states and singly charged multimers of molecular [MH]+ ions over the entire record range, based on MALDI methods. The technique is tested using calibration mixtures and pooled serum quality control samples acquired along with clinical study data. The described automated procedure improves the analysis and dimension reduction of MS data for comparative proteomics applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Lignin is the second most abundant natural biopolymer and its wastes are significant sources for renewable chemicals as an alternative to conventional fossil fuels. Consequently, chemical characterization methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This short overview summarizes rapid data‐processing methods developed in our laboratory for application to full‐scan raw data from high‐resolution mass spectrometry experiments of decomposed lignin samples. The discussed graphical and statistical methods support the initial classification and elucidation of the main structural features of the lignin components without the need for time‐consuming tandem mass spectrometry analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号