首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red single crystals of Eu2OI2 were obtained from a reaction mixture of barium metal, EuI2, Eu4OI6 and some NH4I in a tantalum tube at 780/500 °C. The crystal structure (orthorhombic, Imcb, Z = 4, a = 648.93(11), b = 742.85(13), c = 1307.1(3) pm, R1(all) = 0.0605) contains {Eu4O} tetrahedra connected via trans‐edges to infinite chains. The iodide ions surround and connect these chains to a three‐dimensional structure.  相似文献   

2.
Two new saccharinate/NH3 complexes of composition [Ni(sac)2(NH3)4] and [Zn(sac)2(NH3)2] were obtained and their crystal structures determined by single crystal X‐ray diffractometry. The elongated octahedral NiII complex crystallizes in the monoclinic P21/c space group with Z = 2 whereas the tetrahedral ZnII complex is triclinic (space group and Z = 2). For [Ni(sac)2(NH3)4] the magnetic moment and electron absorption spectrum were obtained and discussed. The infrared spectra of both complexes were also recorded and briefly commented.  相似文献   

3.
Europium aluminium garnet (Eu3Al5O12, EAG) was synthesized by an aqueous sol‐gel process and subsequent thermal annealing at 800 – 850 °C. Eu3Al5O12 crystallizes cubic ( and its crystal structure was refined from X‐ray powder data. The refined oxygen position in the structure of EAG yields four shorter and four longer distances between europium and the eight surrounding oxygen atoms, forming a distorted dodecahedron. Pure Eu3Al5O12 can be treated at temperatures around 1000 °C before it converts into perovskite‐like EAP near 1300 °C.  相似文献   

4.
A new phase in europium‐tin‐chalcogenide chemistry has been prepared using the reactive flux method: Eu8(Sn4Se14)(Se3)2. The compound crystallizes in the orthorhombic space group P21212 with cell parameters a = 11.990(2) Å, b = 16.425(4) Å, c = 8.543(1) Å, and Z = 2. Eu8(Sn4Se14)(Se3)2 is a three dimensional structure with EuII cations linked together with an unusual (Sn4Se14)12– anionic unit and (Se3)2– chains. UV‐VIS‐NIR band‐gap analysis shows that these black metallic crystals are likely semiconductors with an optical band‐gap of 1.07 eV.  相似文献   

5.
Two novel ligands N‐Benzyl‐2‐{2′‐[(benzyl‐phenyl‐carbamoyl)‐methoxy]‐[1,1′]binaphthalenyl‐2‐yloxy}‐N‐phenyl‐acetamide (L1) and N‐Methyl‐2‐{2′‐[(methyl‐phenyl‐carbamoyl)‐methoxy]‐[1,1′]binaphthalenyl‐2‐yloxy}‐N‐phenyl‐acetamide (L2), and their europium(III) complexes with picrate, [Eu(pic)3(L1)] and [Eu(pic)3(L2)], were synthesized and characterized by elemental analysis, IR, UV‐Vis and fluorescence spectroscopy. The crystal structure of [Eu(pic)3(L1)]·2CHCl3 was determined by single crystal X‐ray diffraction. The europium atom is coordinated by nine oxygen atoms of four from the L1 and five from two bidentate and one unidentate picrates. The fluorescent intensity of [Eu(pic)3(L2)] is about 2.6 times that of [Eu(pic)3(L1)] in solid states. But in CHCl3 solution, the fluorescent intensity of [Eu(pic)3(L1)] is stronger slightly than [Eu(pic)3(L2)].  相似文献   

6.
The structure of trans‐[Cr(tn)2Br2]ClO4 (tn = propane‐1, 3‐diamine) has been determined by a single‐crystal X‐ray diffraction study at 100 K. The complex crystallizes in the space group P$\bar{1}$ of the triclinic system with two mononuclear formula units in a cell of dimensions a = 6.8220(4), b = 8.86199(9), c = 12.6644(8) Å and α = 77.859(7)°, β = 81.765(6)°, and γ = 77.764(7)°. The chromium atom is in a slightly distorted octahedral environment coordinated by four nitrogen atoms of two tn ligands and two bromine atoms in trans positions. The two six‐membered chelate rings in the complex cations are oriented in an anti chair‐chair conformation with respect to each other. The mean Cr–N(tn) and Cr–Br bonds are 2.093(3) and 2.4681(4) Å, respectively. The crystal packing is stabilized by hydrogen bonds. The infrared and electronic absorption spectral properties are consistent with the result of X‐ray crystallography. It is confirmed that the nitrogen atoms of the tn ligand are strong σ‐donors, but the bromido ligands have weak σ‐ and π‐donor properties toward the chromium(III) ion.  相似文献   

7.
Blue single crystals of Cu[μ3‐O3P(CH2)2COOH] · 2H2O ( 1 ) and Cu[(RS)‐μ3‐O3PCH(C2H5)COOH] · 3H2O ( 2 ) were prepared in aqueous solutions (pH = 2.5–3.5). 1 crystallizes in space group Pbca (no. 61) with a = 812.5(2), b = 919.00(9), and c = 2102.3(2) pm. Cu2+ is fivefold coordinated by three oxygen atoms stemming from [O3P(CH2)2COOH]2– anions and two water molecules. The Cu–O bond lengths range from 194.0(3) to 231.8(4) pm. The connection between the [O3P(CH2)2COOH]2– anions and the Cu2+ cations yields a polymeric structure with layers parallel to (001). The layers are linked by hydrogen bonds. 2 crystallizes in space group Pbca (no. 61) with a = 1007.17(14), b = 961.2(3), c = 2180.9(4) pm. The copper cations are surrounded by five oxygen atoms in a square pyramidal fashion with Cu–O bonds between 193.6(4) and 236.9(4) pm. The coordination between [O3PCH(C2H5)COOH]2– and Cu2+ results in infinite puckered layers parallel to (001). The layers are not connected by any hydrogen bonds. Each layer contains both R and S isomers of the [O3PCH(C2H5)COOH]2– dianion. Water molecules not bound to Cu2+ are intercalated between the layers. UV/Vis spectra suggest three d–d transition bands at 743, 892, 1016 nm for 1 and four bands at 741, 838, 957, and 1151 nm for 2 , respectively. Magnetic measurements suggest a weak antiferromagnetic coupling between Cu2+ due to a super‐superexchange interaction. Thermoanalytical investigations in air show that the compounds are stable up to 95 °C ( 1 ) and 65 °C ( 2 ), respectively.  相似文献   

8.
The crystal structure of [Pb(sac)2ophen(H2O)2] (sac = saccharinate anion; ophen = 1,10‐phenanthroline) has been solved by single X‐ray diffractometry. It crystallizes in the monoclinic space group C2/c with Z = 4. The PbII atom presents the coordination number eight with unusual coordination of the ligand atoms between square‐antiprism and dodecahedron. The saccharinate anion acts as a bidentate ligand. The i. r. spectrum of the complex has been analyzed in detail and assigned on the basis of the structural peculiarities.  相似文献   

9.
The aquaorotatotriethanolaminenickel(II) monohydrate, [Ni(HOr)(H2O)(tea)]·H2O ( 1 ), was synthesized and characterized by means of elementel analysis, IR and UV‐Vis, spectroscopy, magnetic susceptibility, thermal analysis and X‐ray diffraction techniques. The nickel ion in [Ni(C5H2N2O4)(H2O)(N(C2H4OH)3)] is chelated to the deprotonated N3 pyrimidine atom and to the carboxylate oxygen atom of the bidentate orotate dianion, and to the one nitrogen and two oxygen atoms of the tridentate triethanolamine molecule and its octahedral geometry is completed by an aqua ligand. It crystallizes in the monoclinic system, space group P21/c with lattice parameters a = 7.1528(5) Å, b = 19.4903(14) Å, c = 11.8085(8) Å, β = 106.237(5)°, V = 1580.55(19) Å3, Z = 4. An extensive three dimensional network of Ow‐H…O, N‐H…O and O‐H…O hydrogen bonds, π‐π and π‐ring interactions are responsible for crystal stabilization. The decomposition reaction take places in the temperature range 20‐1000 °C in the static air atmosphere. Thermal decomposition of 1 proceeds in three stages.  相似文献   

10.
[Be(OH2)4]Cl2 – Preparation, IR spectrum, and Crystal Structure Single crystals of [Be(OH2)4]Cl2 were prepared by the reaction of thionyl chloride at 20 °C with samples which result from evaporated, HCl containing, aqueous solutions of BeCl2. With excess of boiling thionyl chloride BeCl2 is formed. [Be(OH2)4]Cl2 is characterized by IR spectroscopy and by X‐ray crystal structure determination: Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 653.53(5), b = 1298.15(14), c = 789.52(6) pm, β = 103.005(9)°, R1 = 0.027. The structure consists of slightly distorted tetrahedral [Be(OH2)2]2+ ions, which are connected with the chloride ions via nearly linear O–H···Cl hydrogen bonds to give a 3D network.  相似文献   

11.
A new 3D MnII metal‐organic framework compound {Mn(phen)(dcbp)}n (H2dcbp = 4,4‐dicarboxy‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) was isolated under hydrothermal conditions and structurally characterized. In the compound, the dcbp ligand is deprotonated to give a neutral species (metal:ligand with 1:1 stoichiometry). Along the c axis, the neighboring MnII ions are linked by two carboxylate bridges in µ2‐coordinating mode to generate a 1D zigzag chain, and these chains are interlinked by dicarboxylate groups of long dcbp ligands to generate a 3D (4,4)‐connected structure with the (42.84) net topology. IR and UV/Vis spectroscopy and variable temperature magnetic susceptibility measurements were made, which indicated weak antiferromagnetic interactions between the MnII ions of the compound.  相似文献   

12.
Bis(triethanolamine)ytterbium(II) diperchlorate was obtained by electrochemical reduction. The metal ion is surrounded by two triethanolamine molecules only, and its first sphere of coordination consists of six O and two N atoms. The compound shows weak luminescence at 77 K with a very broad emission band (488—667 nm). The complexation of triethanolamine shifts the Yb (III) reduction potential of 0.46 V towards more negative values.  相似文献   

13.
The activity of metallocene/methylaluminumoxane (MAO) catalysts in olefin polymerization is highly dependent on both the alkylation and activation of the complexes. The leaving ligands have an important role in the complex activation, influencing the activity of the system. The aim of this work was to study the reactions of complexes Me2Si(2‐Me‐4,5‐BenzInd)2ZrCl2 ( A ; BenzInd = benzindenyl) and Me2Si(2‐Me‐4,5‐BenzInd)2Zr(Cl)(NEt2) ( B ) with trimethylaluminum (TMA) and MAO. The reaction kinetics and products were studied by both ultraviolet–visible and NMR spectroscopy. In addition, the polymerization behavior of the different species was investigated in propene polymerizations. Complex B was more easily monomethylated by TMA than complex A and resulted in L2Zr(Me)(NR2)‐type species. Monomethylation of the complexes before polymerization enhanced the polymerization activity of both complexes. When complexes A and B reacted with MAO, similar cationic species were formed, giving equal polymerization activities. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6455–6464, 2005  相似文献   

14.
KEu(CH3COO)3, the First Ternary Europium(II) Acetate On of EuCl2 with a melt of dry potassium acetate yields pale greenish-yellow single crystals (300°C, sealed glass ampoule, EuCl2 and K(CH3COO) in a molar ratio of 1 : 3). The crystal structure determination (orthorhombic, P212121 (no. 19), Z = 8, a = 1166.3(1) pm, b = 1288.4(2) pm, c = 1493.9(2) pm, R = 0.043, Rw = 0.032) revealed the composition KEu(CH3COO)3. The structure consists of one-dimensional chains built up by bridging acetate groups in the [100] and [001] directions in which potassium and europium alternate as central atoms. Eu2+ is surrounded by nine and eight and K+ by seven and six oxygen atoms, respectively. These chains are linked in the [010] direction so that a three-dimensional network is formed. The high coordination numbers of the acetate oxygen atoms of up to four are remarkable. Therefore, the acetate groups have highly bridging functions in addition to their chelating coordination of the cations.  相似文献   

15.
Hydrogen Bonds in 1,1‐Bis(2‐hydroxyethyl)‐3‐benzoylthiourea and its Nickel(II)‐ and Copper(II)‐Chelate Complexes The ligand 1,1‐bis(2‐hydroxyethyl)‐3‐benzoylthiourea HL, ( 1 ), yields with nickel(II) and copper(II) ions neutral complexes [NiL2], ( 2 ), and [CuL2], ( 3 ). By X‐ray structure analysis and IR spectroscopy different intramolecular hydrogen bonds (OH…O) and (OH…N) could be identified in both equally coordinated ligands of the [NiL2] molecule. For comparison X‐ray and IR data were also estimated for 1 and 3 .  相似文献   

16.
The N‐functionalized macrocyclic ligand 2,13‐bis(1‐naphthalenylmethyl)‐5,16‐dimethyl‐2,6,13,17‐tetraazatricyclo(14,4,01.18,07.12)docosane (L3) and its copper(II) complex were prepared. The crystal structure of [Cu(L3)](ClO4)2·2CH3CN was determined by single‐crystal X‐ray diffraction at 150 K. The copper atom, which lies on an inversion centre, has a square planar arrangement and the complex adopts a stable trans‐III configuration. The longer distance [2.081(2) Å] for Cu–N(tertiary) compared to 2.030(3) Å for Cu–N(secondary) may be due to the steric effect of the attached naphthalenylmethyl group on the tertiary nitrogen atom. Two perchlorate ions are weakly attached to copper in axial sites and are further connected to the ligand of the cation through NH ··· O hydrogen bonds [N ··· O 3.098 Å]. IR and UV/Vis spectroscopic properties are also described.  相似文献   

17.
18.
Single crystals of [Eu(C4H4O6)(H2O)2](H2O)2 were obtained from the combination of solutions of EuCl2, previously obtained by electrolysis of an aqueous solution of EuCl3, and tartraric acid, neutralized by LiOH. The crystal structure (orthorhombic, P212121, Z = 4, a = 948.9(1), b = 954.6(1), c = 1098.4(1) pm; R(F) = 0.0242 and Rw(F2) = 0.0585 for I > 2σ(I); R(F) = 0.0256 and Rw(F2) = 0.0592 for all data) is isotypic with [Ca(C4H4O6)(H2O)2](H2O)2 and [Sr(C4H4O6)(H2O)2](H2O)2 exhibiting a three‐dimensional structure. The divalent cations (Eu2+, Ca2+, Sr2+) are eight‐coordinate by oxygen atoms that originate from carboxylate and hydroxyl groups of the tartraric dianion and two of the four water molecules.  相似文献   

19.
Four new lead(II) thiosaccharinate complexes: [Pb(tsac)2H2O] (1) (tsac: thiosaccharinate anion), [Pb2(tsac)4(py)4] (2) (py: pyridine), [Pb(tsac)(o‐phen)2](tsac)·CH3CN (3) (o‐phen: 1,10‐phenantroline), and [Pb(tsac)2(bipy)] (4) (bipy: 2,2′‐bipyridine) were prepared. The infrared and electronic spectra as well as the thermal analysis of all the compounds were recorded and discussed. The thiosaccharinate anion acts in three different coordination forms, one of then reported for the first time. The crystal structures of complexes 2 and 3 have been determined by single crystal X‐ray diffractometry. In complex 2 , two monomeric moieties are joined together forming a symmetric bis‐μ‐sulphur bridged dimer by interaction of two lead(II) atoms through the exocyclic sulphur atoms of two thiosaccharinate ligands. The seven‐fold coordination sphere of each lead atom is completed by two pyridine nitrogen atoms and by another sulfur and two nitrogen atoms of the thiosaccharinate anions. In complex 3 , the lead(II) atom is coordinated by four nitrogen atoms of two 1,10‐phenantroline molecules and by the sulfur and nitrogen atoms of one thiosaccharinate ion. The second anion has an electrostatic interaction with the nucleus.  相似文献   

20.
(Ph3Ge)2Eu(THF)4 ( 1 a ) and (Ph3Ge)2Eu(DME)3 ( 1 b ) have been synthesized by reacting Ph3GeH with europium naphthalene, C10H8Eu(THF)2, in THF or DME, respectively. The reaction of Ph3GeH with C10H8[EuI(DME)2]2 in DME yielded Ph3GeEuI(DME)2 ( 2 ). The addition of two equivalents of CH3I to a solution of 1 b in THF produced Ph3GeMe and EuI2(DME)2 with almost quantitative yields. Complex 2 easily disproportionates forming mixtures of 1 b and EuI2(DME)2. The molecular structure of 1 b was determined from X-ray diffraction data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号