首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

2.
3,5‐Diamino‐1,2,4‐triazole ( 1 , guanozol) was protonated with diluted hydrochloric acid, nitric acid, as well as perchloric acid forming 3,5‐diamino‐1,2,4‐triazolium chloride hemihydrate ( 2 ), 3,5‐diamino‐1,2,4‐triazolium nitrate ( 3 ) and 3,5‐diamino‐1,2,4‐triazolium perchlorate ( 4 ), respectively. In a second step 4 reacted with potassium dinitramide forming 3,5‐diamino‐1,2,4‐triazolium dinitramide ( 5 ) and low soluble potassium perchlorate. Compounds 2 – 5 were characterized by low temperature single X‐ray diffraction, IR and Raman as well as multinuclear NMR spectroscopy, mass spectrometry and differential scanning calorimetry. The heats of formation of 1 – 5 were calculated by the CBS‐4M method to be 81.1 ( 1 ), 124.7 ( 2 ), –76.1 ( 3 ), –25.2 ( 4 ) and 138.7 ( 5 ) kJ·mol–1. With these values as well as the X‐ray densities several detonation parameters were calculated using both computer codes EXPLO5.03 and EXPLO5.04. In addition, the sensitivities of 1 – 5 were determined by the BAM drophammer and friction tester as well as a small scale electrical discharge device.  相似文献   

3.
Characterization of the Protons in Polycrystalline Paratungstates using 1H MAS NMR Investigations 1H MAS NMR experiments are used to characterize the non‐acid protons of the anions in polycrystalline paratungstates by means of the measured isotropic chemical shift values. The investigation of various hydrates of ammonium paratungstate allows a direct proof of protons in NH4 ions and in water molecules while protons of the anions are not detectable. However, for both the potassium and the sodium paratungstates 1H MAS NMR investigations detected the protons of water molecules and the non‐acid protons of the paratungstate anions. Additional 1H broad‐line NMR experiments at 173 K support the interpretation of the results obtained by the 1H MAS NMR investigations. For the NMR signal of the non‐acid protons of the paratungstate anion in the 1H MAS NMR spectra of the potassium salt line‐splitting appears. This refers to the existence of two nonidentical positions of the protons in the crystal lattice and is in agreement with the results of the X‐ray structural analysis.  相似文献   

4.
The potassium fluoroborates K[RCF=CFBF3] (R = F, Cl (cis‐/trans‐mixture), trans‐C4F9, cis‐C2F5, cis‐C6F13, trans‐C4H9, trans‐C6H5) were prepared by fluoridation (methoxide‐fluoride substitution with K[HF2]) of RCF=CFB(OMe)2 and Li[RCF=CFB(OMe)3] which were obtained from RCF=CFLi and B(OMe)3. The K[RCF=CFBF3] salts were characterized by their 1H, 11B, 19F NMR and IR spectra.  相似文献   

5.
Three novel pyridine functionalized N‐heterocyclic silanes, bearing chloride and azide moieties, were synthesized and characterized by NMR spectroscopy (1H, 13C, 29Si), mass spectrometry, elemental analysis, and single‐crystal XRD. The molecular structures show a comparably strong dative interaction of the pyridine‐N with the Si center, formally inducing a penta‐coordination arrangement at the silicon(IV). Under appropriate conditions, the silylazides, presented in this work, might be able to thermo‐ or photolytically liberate gaseous nitrogen giving rise to a promising synthetic option to access a variety of new transition metal silylene complexes with potential applications in various catalytic reactions.  相似文献   

6.
Two solid solution series exist in the system MgMoO4‐NiMoO4. The α‐Ni1–yMgyMoO4 solution series, isostructural to α‐NiMoO4, is thermodynamically stable at ambient conditions for compositions between 0 % and about 75 % magnesium content. The solution series β‐Mg1–xNixMoO4, isostructural to MgMoO4 and the high temperature β modification of NiMoO4, is thermodynamically stable at ambient conditions for compositions with < 25 % nickel content. A complete solid solution series β‐Mg1–xNixMoO4 exists at higher temperatures (> 823 K). The transition temperature for the α → β transition decreases with increasing magnesium content. The coexistence of both polymorphs at room temperature in samples with a wide range of composition is a result of the kinetic inhibition of the phase transition β → α. The chemical vapor transport of β‐Mg1–xNixMoO4 solid solutions with chlorine was investigated. Crystals with a nickel content up to 25 % were synthesized in temperature gradients 1273 K → 1223 K or 1273 K → 1173 K. Deposited nickel richer crystals are destroyed during cooling down to room temperature due to the phase transition. The observed distinctive nickel enrichment during the transport process is in good agreement with predictions by thermodynamic modeling.  相似文献   

7.
1H‐detected magic‐angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back‐exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using 2H excitation instead of 1H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, “quadruple‐resonance NMR spectroscopy”, is presented which relies on an efficient 2H‐excitation and 2H‐13C cross‐polarization (CP) step, combined with 1H detection. We show that by using 2H‐excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.  相似文献   

8.
Organotin compounds are a recurring motif in organometallic chemistry. The syntheses and characterization of new diorganotin compounds with α‐oxoglutaric acid isonicotinyl hydrazone are described, prepared compounds were characterized by elemental analysis, UV/Vis, 1H, and 13C NMR spectroscopy, and X‐ray diffraction. They both have a distorted pentagonal bipyramidal arrangement, with a heptacoordinated central tin atom. Compound 1 presents a centrosymmetric dinuclear framework. Interestingly, intermolecular O–H ··· N and O–H ··· O hydrogen bonds contribute to the two‐dimensional network. Compound 2 is a simple mononuclear compound, which exhibits a rare one‐dimensional chain constructed by intermolecular O–H ··· Cl and N–H ··· O hydrogen bonds.  相似文献   

9.
10.
The mechanochemical synthesis offers an easy access to obtain alkaline earth metal terephthalates M(C8H4O4) · nH2O (M = Ca, Sr, Ba). In the presented study we describe for the first time the mechanochemical synthesis of powders of Ca(C8H4O4) · 3H2O, Ca(C8H4O4), Sr(C8H4O4) · H2O, and Ba(C8H4O4), which so far were only synthesized as single crystals from aqueous solutions or by reactions in an autoclave. Furthermore, a new hydrate Ba(C8H4O4) · 2(1.5)H2O, not described so far in the literature, was prepared. All compounds were characterized by X‐ray powder diffraction, thermal analysis, elemental analysis, FT‐IR, and MAS NMR spectroscopic measurements.  相似文献   

11.
A carbonate‐bridged rhodium(III) dimeric complex of formula μ‐CO3‐[(ppy)2Rh]2, (ppy = 2‐phenylpyridine) was synthesized and characterized by IR and 1H NMR spectroscopy as well as X‐ray diffraction. The bridging carbonate ion presumably originates from the capture of CO2 in air deduced on a series of control experiments, which may have valuable implications for the study of fixation of CO2. The luminescent and thermal properties of this complex were also investigated.  相似文献   

12.
Multianvil Synthesis, X‐ray Powder Diffraction Analysis, 31P‐MAS‐NMR, and FTIR Spektroscopy as well as Material Properties of γ‐P3N5, a High‐Pressure Polymorph of Binary Phosphorus(V) Nitride, Built up from Distorted PN5 Square Pyramids and PN4 Tetrahedra The high‐pressure phase γ‐P3N5 was synthesized at a pressure of 11 GPa and a temperature of 1500 °C in a multianvil apparatus. Partially crystalline P3N5 has been used as a starting material. The crystal structure was solved by direct methods on the basis of X‐ray powder diffraction data and it was refined by the Rietveld method (Imm2, a = 1287.21(4), b = 261.312(6), c = 440.03(2) pm, Z = 2, Rp = 0.073, wRp = 0.094, RF = 0.048). γ‐phosphorus nitride crystallizes in a three‐dimensional network structure built up from corner sharing PN4 tetrahedra and trans‐edge sharing distorted PN5 square pyramids. In the 31P‐MAS‐NMR spectrum two sharp isotropic resonances with an intensity ratio of 1 : 2.02(5) are observed at —11.95(3) and —101.72(7) ppm, respectively. The IR‐spectroscopic and thermal properties of γ‐P3N5 are described. Measurement of the Vickers hardness resulted in a value of 9.7(21) GPa for sintered polycrystalline γ‐P3N5, which is significantly higher than that for the partially crystalline normal pressure modification of P3N5 (5.1(7) GPa).  相似文献   

13.
Two ionic carbon nitride type compounds containing the ammelinium cation, ammelinium sulfate cyanuric acid (6C3N5H6O+ · 3SO42– · 1?C3N3H3O3 · H2O) ( 1 ) and ammelinium sulfate monohydrate (2C3N5H6O+ · SO42– · H2O) ( 2 ) were synthesized through hydrolysis of melam (C6N11H9) in diluted sulfuric acid. 1 crystallizes in hexagonal space group P63 (no. 173) with lattice parameters of a = 14.642(3), c = 13.113(4), and Z = 2. The structure is comprised of protonated ammelinium ions and neutral cyanuric acid molecules, which form a layered structure, as well as sulfate ions that span through these layers. 2 crystallizes in the triclinic space group P1 with lattice parameters of a = 7.404(3), b = 9.673(4), c = 10.040(4), α = 91.098(15), β = 109.884(10), γ = 92.567(13), and Z = 2. As for 1 , the ammelinium rings form layers with the sulfate ions located in between. In both structures, no extended hydrogen bond networks between the respective triazine‐based molecules are formed. Instead, single molecules or small building blocks occur isolated and interact primarily with sulfate anions. Compound 1 , which was obtained phase pure, was further investigated by FTIR spectroscopy, solid‐state NMR spectroscopy and powder X‐ray diffractometry.  相似文献   

14.
Photoisomerizable glyco‐SAMs (self‐assembled monolayers), utilizing synthetic azobenzene glycoside derivatives were fabricated. The ultimate goal of this project is to assay the influence of the 3D arrangement of sugar ligands on cell adhesion, and eventually make cell adhesion photoswitchable. However, it is a prerequisite for any biological study on the spatial conditions of carbohydrate recognition, that photoisomerization of the surface molecules can be verified. Here, we employed IRRAS and XPS to spectroscopically characterize glyco‐SAMs. In particular and unprecedented to date, we prove reversible EZE isomerization of azobenzene glycoside‐terminated SAMs.  相似文献   

15.
Integramide A is a 16‐amino acid peptide inhibitor of the enzyme HIV‐1 integrase. We have recently reported that the absolute stereochemistries of the dipeptide sequence near the C terminus are L ‐Iva14‐D ‐Iva15. Herein, we describe the syntheses of the natural compound and its D ‐Iva14‐L ‐Iva15 diastereomer, and the results of their chromatographic/mass spectrometric analyses. We present the conformational analysis of the two compounds and some of their synthetic intermediates of different main‐chain length in the crystal state (by X‐ray diffraction) and in solvents of different polarities (using circular dichroism, FTIR absorption, and 2D NMR techniques). These data shed light on the mechanism of inhibition of HIV‐1 integrase, which is an important target for anti‐HIV therapy.  相似文献   

16.
The synthesis of two formyl 2‐tetrazenes, namely, (E)‐1‐formyl‐1,4,4‐trimethyl‐2‐tetrazene ( 2 ) and (E)‐1,4‐diformyl‐1,4‐dimethyl‐2‐tetrazene ( 3 ), by oxidation of (E)‐1,1,4,4‐tetramethyl‐2‐tetrazene ( 1 ) using potassium permanganate in acetone solution is presented. Compound 3 was also synthesized in an improved yield from the oxidation of 1‐formyl‐1‐methylhydrazine ( 4a ) using potassium permanganate in acetone. Both compounds 2 and 3 were characterized by analytical (elemental analysis, GC‐MS) and spectroscopic methods (1H, 13C, and 15N NMR spectroscopy, and IR and Raman spectroscopy). In addition, the solid‐state structures of the compounds were confirmed by low‐temperature X‐ray analysis. (Compound 2 : triclinic; space group P‐1; a=5.997(1) Å, b=8.714(1) Å, c=13.830(2) Å; α=107.35(1)°, β=90.53(1)°, γ=103.33(1)°; VUC=668.9(2) Å3; Z=4; ρcalc=1.292 cm?3. Compound 3 : monoclinic; space group P21/c; a=5.840(2) Å, b=7.414(3) Å, c=8.061(2) Å; β=100.75(3)°; VUC=342(2) Å3; Z=2; ρcalc=1.396 g cm?3.) The vibrational frequencies of compounds 2 and 3 were calculated using the B3LYP method with a 6‐311+G(d,p) basis set. We also computed the natural bond orbital (NBO) charges using the rMP2/aug‐cc‐pVDZ method and the heats of formation were determined on the basis of their electronic energies. Furthermore, the thermal stabilities of these compounds, as well as their sensitivity towards classical stimuli, were also assessed by differential scanning calorimetry and standard BAM tests, respectively. Lastly, the attempted synthesis of (E)‐1,2,3,4‐tetraformyl‐2‐tetrazene ( 6 ) is also discussed.  相似文献   

17.
The trans‐bis(trimethylsilyl)chalcogenolate palladium complexes, trans‐[Pd(ESiMe3)2(PnBu3)2] [E = S ( 1 ) and Se ( 2 )] were synthesized in good yields and high purity by reacting trans‐[PdCl2(PBu3)2] with LiESiMe3 (E = S, Se), respectively. These complexes were characterized by 1H, 13C{1H}, 31P{1H} (and 77Se{1H}) NMR spectroscopy and single‐crystal X‐ray analysis. The reaction of 2 with propionyl chloride led to the formation of trans‐[Pd(SeC(O)CH2CH3)2(PnBu3)2] ( 3 ), a trans‐bis(selenocarboxylato) palladium complex and thus established a new method for the formation of this type of complex. Complex 3 was characterized by 1H, 13C{1H}, 31P{1H} and 77Se{1H} NMR spectroscopy and a single‐crystal X‐ray structure analysis.  相似文献   

18.
Dealuminated Y zeolites (DAY) were obtained by steaming of NH4NaY at temperatures between 450 °C and 700 °C. They were characterised by means of 27Al and 29Si MAS NMR, IR spectroscopic and XRD measurements. The Si/Al framework ratios of samples were calculated using the 29Si MAS NMR signal intensities, the wave numbers of the double‐ring vibration band wDR and the asymmetrical TOT valence vibration wTOT of IR spectra as well as the XRD lattice constant a0. In contrast to actual Si/Al ratio obtained from wDR and a0, the NMR spectroscopic and wTOT values were determined to be too high because of the superposition of the signals coming from dealuminated zeolite framework and silica gel which forms in the zeolite as a result of steaming. The differently determined Si/Al ratios characterise the siliceous extra‐framework species.  相似文献   

19.
Homonuclear helicates with rare‐earth‐metal(III) ions or heteronuclear derivatives with rare‐earth‐metal and aluminium or zinc centres are obtained in alkali‐metal‐templated self‐assembly processes from isobutenylidene‐bridged homoditopic bis(2‐carbamido‐8‐hydroxyquinoline)‐derived ligands 1 ? H2 and 2 ? H2 or heteroditopic (8‐hydroxyquinoline)(2‐carbamido‐8‐hydroxyquinoline)‐derived ligands 3 ? H2 and 4 ? H2. Diamagnetic coordination compounds possess a high stability in organic solvents such as CDCl3, [D4]MeOH or [D6]DMSO and can be well characterised by 1H NMR spectroscopy by using methylene protons and the protons of the vinylic units of the ligand as stereochemical or symmetry probes, respectively. Some of the homonuclear complexes could be crystallised and were characterised by using X‐ray diffraction studies. The complexes adopt a triple‐stranded helical structure with a central templating cation encapsulated in their interior. An unusual orientation of the double bond of one spacer towards this cation is observed. The homo‐ and heterodinuclear helicates with ytterbium(III), neodymium(III) or erbium(III) of ligands 2 and 4 were of special interest owing to their near‐infrared (NIR) emitting properties, which were investigated depending on the lanthanide and on the encapsulated alkali‐metal cation.  相似文献   

20.
In this contribution the synthesis and full structural as well as spectroscopic characterization of three 5‐(1,2,4‐triazol‐3‐yl)tetrazoles along with selected energetic moieties like nitro, nitrimino, and azido groups are presented. The main goal is a comparative study on the influence of those variable energetic moieties on structural and energetic properties. A complete characterization including IR and Raman as well as multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and reveal insights into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory and reveal high positive heats of formation for all compounds. The calculated detonation parameters (using the EXPLO5.05 program) are in the range of 8000 m s?1 (8097 m s?1 ( 5 ), 8020 m s?1 ( 6 ), 7874 m s?1 ( 7 )). As expected, the measured impact and friction sensitivities as well as decomposition temperatures strongly depend on the energetic moiety at the triazole ring. The C? C connection of a triazole ring with its opportunity to introduce a large variety of energetic moieties and a tetrazole ring, implying a large energy content, leads to the selective synthesis of primary and secondary explosives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号