首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Several new two‐ligand complexes of zinc(II) with the aromatic N, N‐donor ligands 2, 2′‐bipyridine or 1, 10‐phenanthroline and one of three different α‐hydroxycarboxylates (HL′) derived of the α‐hydroxycarboxylic acids (H2L′) (2‐methyllactic, H2mL; mandelic, H2M or benzilic, H2B) were prepared. The compounds of formula [Zn(HL′)2(NN)]·nH2O (HL′ = HM, HB) were isolated as white powders and characterized by elemental analysis, IR spectroscopy and thermogravimetric analysis. The complexes of general formula [Zn(HL′)(NN)2](HL′)·nH2O (HL′ = HmL, HM) and [Zn(HB)2(NN)2], were obtained as single crystals and were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and X‐ray diffractometry. In all cases, the zinc atom is in a distorted octahedral environment. In [Zn(HL′)(NN)2](HL′)·nH2O the α‐hydroxycarboxylato ligands behave as bidentate chelating monoanion and an α‐hydroxycarboxylate as counterion is also present. In [Zn(HB)2(NN)2], the monoanionic benzilato ligand behaves as monodentate through one oxygen atom of the carboxylate function. The effect of the classical and no‐classical hydrogen bonding and of the π‐π and C‐H…π interactions in the 3D supramolecular arrangement of these molecular complexes is analyzed.  相似文献   

2.
Zinc Complexes of the N,N,S‐Ligand 2‐Mercaptobenzyl‐bis‐(2‐pyridylmethyl)amine An improved synthesis of the title ligand MBPA–H has made its complex chemistry accessible. With diethyl zinc it forms the reactive ethyl complex (MBPA)Zn–C2H5 ( 1 ) whose reaction with phenol leads to (MBPA)Zn–OC6H5 ( 2 ). With zinc nitrate the labile compound (MBPA)Zn–ONO2 ( 3 ) is formed which in turn is converted with thiophenolate into (MBPA)Zn–SC6H5 ( 4 ). Structure determinations of 2 and 3 have confirmed severely deformed trigonal‐bipyramidal coordinations of the zinc atom whose ligation patterns correspond to those in some hydrolytic zinc enzymes.  相似文献   

3.
Two new cobalt(II) coordination polymers, [Co(PDCO)(H2O)2]n ( 1 ) and [Co(PDCO)(bix)(2H2O)2·H2O]n ( 2 ) ( PDCO= pyridine‐2,6‐dicarboxylic acid N‐oxide, bix = 1,4‐bis(imidazol‐1‐ylmethyl)‐benzene) have been synthesized under hydrothermal conditions. Single‐crystal X‐ray analyses show that compound 1 is a 1D helical chainlike structure with 41 screw axes parallel to the crystallographic c‐axis and interchain hydrogen‐bonding interactions further result in a 3D framework; for compound 2 , each bix ligand connects two Co1 atoms (or two Co2 atoms) to give a zigzag chain structure and these 1D chains are connected by offset face‐to‐face π···π and hydrogen bond interactions to generate a 3D architecture. The thermogravimetric analyses were investigated for 1 and 2 . The determination of variable temperature magnetic susceptibilities indicates an antiferromagnetic interaction between the metal atoms for 1 and 2 .  相似文献   

4.
The B‐(triphenylgermyl)borazines 4 a and 4 b , the 1,2‐bis(dimethylamino)‐1,2‐bis(triphenylgermyl)‐diborane(4), 5 , and the (2,2,6,6‐tetramethylpiperidino)(triphenylgermyl)‐boranes 6 and 7 were prepared by allowing LiGePh3 to react with the corresponding B‐bromoborazines and aminochloroboranes, respectively. BH3 dissolved in thf readily adds to LiGePh3 generating Li(H3BGePh3), 8 a , in thf solution. Addition of N‐bases to the solution of 8 a produced (tmen · thf)Li(H3BGePh3), 8 b , and dimeric (py)2Li(H3BGePh3), 8 c . The borazine ring in 4 b is distorted into a boat shape. In 5 the NBGe planes are twisted against each other by 85°. Comparison with analogous (triphenylstannyl)boranes points to a more pronounced steric effect of the Ph3Ge group over the Ph3Sn group due to the shorter B–Ge bond. A fairly short B–Ge bond is found for the (triphenylgermyl)trihydroborates. The molecular structure of (Et2O)3LiGePh3 shows compressed C–Ge–C bond angles. Its molecular parameters fit well into the series LnLiEPh3 (E = Si, Sn, Pb).  相似文献   

5.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures.  相似文献   

6.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

7.
A Systematic Study on the Coordination Properties of the Guanidine Ligand N1,N2‐Bis(1,3‐dimethylimidazolidin‐2‐ylidene)‐ethane‐1,2‐diamine with the Metals Mn, Co, Ni, Ag and Cu The syntheses and characterization of the compounds [Mn(DMEG2e)Cl2] ( 1 ), [Co(DMEG2e)Cl2] ( 2 ), [Ni(DMEG2e)2]I2 ( 3 ), [Cu(DMEG2e)I] ( 4 ) and {[Ag(DMEG2e)]BF4}n ( 5 ) with the bisguanidine ligand N1,N2‐bis(1,3‐dimethylimidazolidin‐2‐ylidene)ethane‐1,2‐diamine (DMEG2e) are described. All complexes are synthesized by the reaction of the corresponding metal salt with the DMEG2e ligand in MeCN or THF. The coordination of the metal atoms vary from a distorted tetrahedron in 1 and 2 , a distorted trigonal planar coordination in 4 to linear coordination in 5 . Contrasting to the compounds 1 , 2 , 4 and 5 which exhibit a 1:1 ratio of metal to ligand, two DMEG2e ligands are bound to the Ni atom in the case of 3 resulting in a coordination polyhedron which represents the stage exactly in the middle between the square‐planar and the tetrahedral geometry. Whereas crystals of 1 , 2 , 3 and 4 contain discrete molecules, in 5 the Ag atoms are alternately linked by two different DMEG2e ligands to form a chain structure. The comparative discussion of several DMEG2e containing complexes with the compounds reported herein supplements this systematic study.  相似文献   

8.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

9.
Single crystal X‐ray diffraction analyses of LSn(OCH2CH2)2NR [ 1 , R = Me, L = lone pair; 2 , R = Me, L = W(CO)5; 3 , R = t‐Bu, L = W(CO)5] reveal these compounds to be dimeric and cis‐configurated. The dimerization is realized by intramolecular O→Sn interactions to give four‐membered Sn2O2‐rings. In addition, there are intramolecular N→Sn interactions ranging in between 2.356(5) ( 2 ) and 2.549(4) Å ( 3 ).  相似文献   

10.
Pale‐green crystals of the title complex were prepared by reaction of 2‐formylpyridine semicarbazone (HCSpy) and nickel(II) perchlorate in boiling ethanol. The crystals are triclinic with the nickel ion in an octahedral arrangement, coordinated by two nitrogen atoms and one oxygen donor atom from each ligand molecule. The effect of coordination on bond lengths and angles was explored by comparison with the single‐crystal structure data of the free ligand HSCpy, which was collected as well. The assumed coordination mode was supported by 1H and 13C NMR spectroscopic data. A detailed analysis of the electronic properties, including semi‐empirical quantummechanical calculations is presented. Furthermore, the data obtained from magnetic susceptibility and EPR measurements are in accordance with a low‐spin d8 nickel(II) complex.  相似文献   

11.
Abstract. Two coordination polymers, namely, [Zn(bpe)0.5(Htbip)(tbip)0.5] · H2O ( 1 ) and [Cd(bpe)0.5(tbip)] ( 2 ) [H2tbip = 5‐tert‐butylisophthalic acid and bpe = 1, 2‐ bis(4‐pyridyl) ethane] were synthesized through hydrothermal reactions. Single‐crystal X‐ray diffraction analysis reveals that complex 1 presents a three‐dimensional (3D) six‐connected uninodal structure with the type of topology of svi‐x/I4/mcmIbam, whereas complex 2 holds a 2D 44sql layer structure. Moreover, the photoluminescent properties of the complexes at room temperature were investigated.  相似文献   

12.
Reaction of 1‐phenyl‐4‐phenylacetyl‐2‐thiosemicarbazide (H2L) with diphenyllead(IV) dichloride and acetate afforded the complexes [PbPh2Cl2(H2L)2] and [PbPh2L]. The ligand and the complexes were characterized by elemental analyses, 1H and 13C NMR spectroscopy and X‐ray crystallography. In the asymmetric unit of crystals of the ligand there are four independent molecules of H2L and four molecules of water, which associate in the lattice as two independent sheets. The complex [PbPh2Cl2(H2L)2]·4MeOH has slightly distorted all‐trans octahedral geometry around the lead atom, and the fact that the ligand is S‐bound rather than O‐bound suggests that PbPh2Cl2 behaves as a “soft” Lewis acid. Hydrogen bonds involving NH groups, Cl atoms and MeOH molecules form a three‐dimensional supramolecular structure. In [PbPh2L]·Me2CO, the L2? anion bridges between two metal centres, binding to one strongly via the N and S atoms and weakly via the O atom, and to the other via the O atom, thus creating polymeric chains along the b axis. The double deprotonation and metallation of H2L induce significant changes in its configuration and lengthen the C‐S and C‐O bonds, suggesting an evolution of the dianion towards a thiol‐enol form.  相似文献   

13.
The pyridine‐2‐carbaldehyde semicarbazone ligand (HL) reacts with iron(II) and copper(II) perchlorates in boiling ethanol to yield red‐violet [FeII(HL)2](ClO4)2·H2O ( 1 ) and light‐green crystals [CuII(HL)2](ClO4)2·H2O ( 2 ). The crystals are triclinic with the metal ions in an octahedral environment, coordinated to two nitrogen and one oxygen‐donor atom from HL. Electronic, magnetic and electrochemical properties are presented as well.  相似文献   

14.
The copper sulfide mineral flotation collector, N‐n‐butyl‐N′‐ethoxycarbonyl‐thiourea (H2bectu), and the 1:1 hexameric copper(I) thioureate complex, [Cu(Hbectu)]6, have been characterized by single crystal X‐ray diffraction. H2bectu crystallizes in the triclinic space group with a = 5.2754(4), b = 9.0042(7), c = 12.6030(9) Å, α = 80.528(6), β = 90.173(6), γ = 76.472(7)°. An intramolecular N‐H···O hydrogen bond between the thioamide proton and carbonyl oxygen forms a planar six‐membered ring in the central core of the molecule with C=O, C=S and C‐N bond lengths in accord with those reported for other N‐alkyl/aryl‐N′‐acyl‐thiourea compounds. [Cu(Hbectu)]6 crystallizes in the monoclinic space group C2/c with a = 23.269(5), b = 13.243(4), c = 23.037(7) Å, β = 91.81(2)° as discrete hexameric clusters disposed about a crystallographic centre of symmetry with a Cu6S6 core consisting of two Cu3S3 chair‐shaped rings linked by coordination of the deprotonated amide nitrogen atom to a copper atom in the adjacent ring. The six ligands assemble as a paddlewheel structure with the ethoxy and n‐butyl substituents packing in an alternating head to tail arrangement. Temperature dependent solution 1H NMR spectroscopic studies show that the hexameric structure of the complex is maintained in solution.  相似文献   

15.
The molecular structures of blue dichloro‐tetrakis(acrylamide) cobalt(II), [Co{O‐OC(NH2)CH=CH2}4Cl2] ( 1 ) and pink hexakis(acrylamide)cobalt(II) tetrachlorocobaltate(II), [Co{O‐OC‐(NH2)CH=CH2}6][CoCl4] ( 2 ), characterized by single X‐ray diffraction, IR spectroscopy and elemental analyses, are described. The coordination of CoII in 1 involves a tetragonally distorted octahedral structure with four O‐donor atoms of acrylamide in the equatorial positions and two chloride ions in the apical positions. The second complex 2 in ionic form contains CoII cations surrounded by an octahedral array of O‐coordinated acrylamide ligands, accompanied by a [CoCl4]2? anion.  相似文献   

16.
New stannylboranes were prepared from tetramethylpiperidino dichloroborane or B‐bromo‐pentamethylborazine with lithium triorganylstannides LiSnR3. Only double stannylation was possible with tmpBCl2 and LiSnMe3, while tmpBCl(SnPh3) was obtained by employing LiSnPh3. This chloride reacted with LiGePh3 to the stannyl germyl borane tmpB(GePh3)(SnPh3). On the other hand, PhMeNBCl2 and an excess of LiSnMe3 gave the borate Li[B(NMePh)(SnMe3)3], which was isolated as a solvate with 4 molecules of THF. The compound is present in the solid state as a solvent separated ion pair. The borate Li(H3BSnMe3) · 2 THF is dimeric in the solid state. Dimerization occurs via two single Li–H–B bridges and a Li–H(B)–Li bridge. The B–Sn bonds in the borates are practically of the same lengths as those in the boranes. In solution all BH bonds of this trihydridoborate are equivalent.  相似文献   

17.
The reaction of Te powder, NaBH4 and Me2N(CH2)3Cl·HCl provided the title compound [H3BNMe2(CH2)3]2Te ( 1 ), whose selective chlorination with SO2Cl2 lead to the formation of [ClH2BNMe2(CH2)3]2TeCl2 ( 2 ) and [Cl3BNMe2(CH2)3]2TeCl2 ( 3 ), respectively. Compounds 1 – 3 were characterized by multinuclear NMR spectroscopy and single crystal X‐ray diffraction.  相似文献   

18.
Some new N‐carbonyl, phosphoramidates with formula C6H5C(O)N(H)P(O)R2 (R = NC3H6 ( 1 ), NC6H12 ( 2 ), NHCH2CH=CH2 ( 3 ), N(C3H7)2 ( 4 )) and CCl3C(O)N(H)P(O)R′2 (R′ = NC3H6 ( 5 ), NHCH2CH=CH2 ( 6 )) were synthesized and characterized by 1H, 13C, 31P NMR and IR spectroscopy and elemental analysis. The structures were determined for compounds 1 and 2 . Compound 1 exists as two crystallographically independent molecules in crystal lattice. Both compounds 1 and 2 produced dimeric aggregates via intermolecular ‐P=O…H‐N‐ hydrogen bonds, which in compound 2 is a centrosymmetric dimer. In compounds with four‐membered ring amine groups, 3J(P,C)>2J(P,C), in agreement with our previous studies about five‐membered ring amine groups. Also, 3J(P,C) values in compounds 1 and 5 are greater than in compounds with five‐, six‐ and seven‐membered ring amine groups.  相似文献   

19.
Bis(1,2‐diselenosquarato) Metalates A series of 1,2‐diselenosquarato metalates [M(dssq)2]2– (M = Pd2+, Pt2+, Cu2+, Ni2+, Zn2+, Cd2+, Pb2+, VO2+) was available by direct synthesis from the appropriate metal salt with dipotassium 1,2‐diselenosquarate in deoxygenized water under an argon athmosphere. The copper(II)complex, [Cu(dssq)2]2–, and the oxovanadium(IV)complex, [VO(dssq)2]2–, were identified in solution by EPR spectroscopy (parameters: [Cu(dssq)2]2–: g0 = 2.073; a = –76.0 · 10–4 cm–1, a = 47.0 · 10–4 cm–1; [VO(dssq)2]2–: g0 = 1.986; a = 74.9 · 10–4 cm–1). The complexes bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)nickelate(II)], (Ph4P)2[Ni(dssq)2], and bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)zincate(II)], (Ph4P)2[Zn(dssq)2], were characterized by X‐ray structure analysis. The square‐planar NiII complex (Ph4P)2[Ni(dssq)2] crystallizes in the monoclinic spacegroup P21/n with the unit cell parameters a = 11.1472(8) Å, b = 15.331(1) Å, c = 14.783(1) Å, β = 94.441(1)° and Z = 2. The ZnII‐complex (Ph4P)2[Zn(dssq)2] is tetrahedral coordinated and crystallizes in the monoclinic spacegroup P21/c with the unit cell parameters a = 9.4238(1) Å, b = 18.5823(3) Å, c = 29.5309(5) Å, β = 96.763(1)° and Z = 4.  相似文献   

20.
Complexes of 2, 6‐bis(hydroxymethyl)pyridine (dhmp) with different CuII salts [CuCl2·6H2O, Cu(ClO4)2·6H2O, Cu(NO3)2·3H2O, Cu(CH3COO)2·H2O] are prepared ( 1 — 5 , respectively), studied by IR, and their crystal structures reported. Dependent on the anion kind, influences on the distortion of the co‐ordination polyhedron, the distribution of donor sites, the formation of a mono‐ or binuclear complex, and the resultant packing structure of the complex are observed, although in no case the counterions of the used CuII salts or water of hydration were found in the co‐ordination sphere. Crystal structures of 1 — 5 indicate hexaco‐ordination of the CuII ions with N2O4‐environment and show that 1 — 4 are mononuclear 2:1 (L:M) complexes, but 5 is a binuclear 4:2 complex. Crystallization of Cu(ClO4)2·6H2O with dhmp yielded two different complexes ( 2 / 3 ). In 3 , one of the dhmp components is mono‐deprotonated and acts as an anionic ligand. The same behavior is found in 5 . Whereas in the neutral ligand complexes 1 , 2 and 4 the basal planes are occupied by O donors, and N atoms are in the axial positions of the octahedrons, in 3 and 5 the bases are formed by two O and two N donor atoms, and O atoms are in the axes. Moreover, complex 3 shows the N atoms in trans position, but 5 in cis position. The packing of the cationic complex units is typical of strong and weak H bond interactions involving the counterions and hydroxylic or aromatic hydrogen atoms to yield complex network structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号