首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new metal–nitroxide complexes {[Ni(NIT4Py)2(obb)(H2O)2] · 1.5H2O}n ( 1 ), {[Co(NIT4Py)2(obb)(H2O)2] · 2H2O}n ( 2 ), and [Co(IM4Py)2(obb)2(H2O)2][Co(IM4Py)2(H2O)4] · 10H2O ( 3 ) with the V‐shaped 4,4′‐oxybis(benzoate) [NIT4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, IM4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxide, and obb = 4, 4′‐oxybis(benzoate) anion] were synthesized and structurally characterized. Single‐crystal X‐ray analyses indicate that complexes 1 and 2 crystallize in neutral one‐dimensional (1D) zigzag chains, in which the nitroxide–metal–nitroxide units are linked by the V‐shaped 4,4′‐oxybis(benzoate) anions, whereas complex 3 consists of isolated mononuclear [Co(IM4Py)2(obb)2(H2O)2]2– anions and [Co(IM4Py)2(H2O)4]2+ ions. Magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the metal ions and the nitroxides.  相似文献   

2.
Two one‐dimensional (1‐D) chain manganese‐nitroxide complexes {[Mn(NIT4Py)2(ip)(H2O)2]·4H2O}n ( 1 ) and [Mn(IM4Py)2(ip)(H2O)2]n ( 2 ) (NIT4Py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, IM4Py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl and ip = isophthalate anion) have been synthesized and characterized by elemental analyses, IR spectrum and electronic absorption spectra. Complex 1 was structurally characterized and it crystallizes in neutral 1‐D chains where MnII nitroxide units [Mn(NIT4Py)2(H2O)2] are linked by isophthalate anions. The magnetic measurements show that complex 1 exhibits antiferromagnetic couplings, while complex 2 exhibits ferromagnetic interactions between the MnII ion and the nitroxide radicals.  相似文献   

3.
Two novel 1‐D chain complexes of a formal iminomethyl nitroxide radical [M(tpyimo)2]2[Au(CN)2]4 (M = Ni, Zn for 1 and 2 , typimo = 4,5‐dihydro‐4,4,5,5‐tetramethyl‐2‐(pyridin‐2‐yl)‐1H‐imidazol‐1‐yloxy), were synthesized and structurally characterized. Both 1‐D chains consist of two kinds of chair‐conformation rings, which include six metal atoms [M2Au4] (M = Ni, Zn), and are connected to each other alternately through aurophilic interactions. On the other hand, [Au(CN) ]4 oligomers are also formed through aurophilic interactions, and used as bridges in the 1‐D chains. The magnetic coupling between the NiII ion and the tpyimo radical in 1 is a strong ferromagnetic interaction. Strong ligand‐centered luminescence is observed at room temperature for both complexes.  相似文献   

4.
A novel heterospin complex containing both NiII and nitroxide radical ligands: [Ni(salox)2(NIT4Py)2] ( 1 ) (salox = salicylaldoxime, NIT4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐ tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) has been synthesized and structurally characterized. The structure consists of neutral Ni(salox)2(NIT4Py)2 moieties bridged by intermolecular hydrogen bonds, forming a one‐dimensional chain structure. Magnetic measurements show intramolecular antiferromagnetic interactions between NIT4Py and Ni2+ ion.  相似文献   

5.
Three new one‐dimensional (1D) chain metal–nitroxide complexes {[Cu(NIT4Py)2(suc)(H2O)] · 3H2O}n ( 1 ), {[Cd(NIT4Py)2(suc)(H2O)] · [Cd(NIT4Py)2(suc)(H2O)2] · 3H2O}n ( 2 ), and {[Zn(NIT4Py)(glu)(H2O)] · H2O}n ( 3 ) [NIT4Py = 2‐(4′‐pyridyl)‐4, 4, 5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, suc = succinate anion and glu = glutarate anion] were synthesized and structurally characterized. Single‐crystal X‐ray analyses indicate that the three complexes crystallize in neutral 1D chains in which the metal‐nitroxide units are linked by flexible dicarboxylate anions. The succinate anions only adopt trans configuration in complexes 1 and 2 , whereas the glutarate anion has gauche/anti conformation in complex 3 . Magnetic measurements show that complex 1 exhibits weak antiferromagnetic interactions between the copper ions and the nitroxides.  相似文献   

6.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

7.
Two heterospin complexes [Cu(NIT3Py)(cda)H2O] · H2O ( 1 ) and [Cu(NIT2Py)(cda)H2O] · H2O · CH3OH ( 2 ) with CuII ions and pyridyl‐substituted nitronyl nitroxide radicals (NITxPy = 2‐(x′‐pyridyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide, x = 3, 2; H2cda = 4‐hydroxy‐pyridine‐2,6‐dicarboxylic acid) were synthesized and characterized structurally and magnetically. The single crystal structures show that the two complexes are both two‐spin complexes, in which the different radicals make the two complexes have different hydrogen bonding interactions to form 2D and 1D supramolecular network for complexes 1 and 2 , respectively. The magnetic measurements indicate that complexes 1 and 2 both exhibit antiferromagnetic interactions between CuII and radicals.  相似文献   

8.
Two new 1‐D silver( I ) complexes, [Ag( I )1.5(IM‐oBA)(NO3)0.5] ( 1 ) and [Ag( I )(NIT‐pBA)] ( 2 ), (IM‐oBAH = 2‐(2‐carboxyphenyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazol‐1‐yloxyl, NIT‐pBAH = 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐3‐oxido‐H‐imidazol‐3‐ium‐1‐yloxyl) have been prepared and structurally characterized. Complexes 1 and 2 crystallized in the monoclinic space groups of C2/c and P21/c, respectively. In complex 1 , the structure consists of trinuclear Ag(I) atoms with different linkages of IM‐oBA and nitrates. The trinuclear Ag(I) atoms are further coordinated to the neighbor IM‐oBA radicals via self‐assembly of the nitrogen atom of imine moiety and extended into formation of a polymeric chain. Complex 2 is constructed from a bis(carboxylato‐O,O')‐bridged centrosymmetric dimeric subunit and extended into a polymeric chain through self‐assembly coordination between metal ions and nitroxide groups of NIT‐pBA radicals. Temperature dependence of magnetic susceptibility measurements showed a weak ferromagnetic coupling between nitroxide radicals in 1 and 2 with J = 5.62 for 1 and 6.62 cm?1 for 2 , respectively.  相似文献   

9.
Cadmium dicyanamide Cd[N(CN)2]2 was synthesized through aqueous ion exchange at room temperature. A reversible phase transition was detected by in situ X‐ray powder diffractometry above 55 °C. The crystal structures of both phases were determined by X‐ray powder diffraction (β‐Cd[N(CN)2]2: T = 22 °C, a = 621.60(3), b = 748.76(4), c = 770.21(5) pm, β = 91.784(3)°, P21/n (no. 14), Z = 2, wRp = 0.063, Rp = 0.050, RF = 0.059; α‐Cd[N(CN)2]2: T = 150 °C, a = 624.62(5), b = 752.92(6), c = 768.30(7) pm, Pnnm (no. 58), Z = 2, wRp = 0.083, Rp = 0.064, RF = 0.087). Both polymorphs consist of Cd2+ and bent planar [N(CN)2] ions. α‐Cd[N(CN)2]2 crystallizes analogously to rutile and is isotypic with MII[N(CN)2]2(M = Mg, Cr, Mn, Co, Ni, Cu). The monoclinic low‐temperature polymorph β‐Cd[N(CN)2]2 is closely related to that of the orthorhombic high‐temperature polymorph α‐Cd[N(CN)2]2 by a translationengleiche transition of index 2.  相似文献   

10.
The bifunctional ligand 2,6‐dipicolinoylbis(N,N‐diethylthiourea) (H2L) readily reacts with mixtures of Zn(CH3COO)2 and LnCl3 in MeOH at ambient temperature with formation of trinuclear heterobimetallic complexes [Zn2Ln(L)2(OAc)3] ( 1a – 1f ) (Ln = Ce, Nd, Sm, Gd, Dy, Er). The X‐ray single‐crystal diffraction and structural studies of the complexes revealed their isostructural nature, in which two doubly‐charged ligands {L2–} bind two Zn2+ ions with the terminal acylthiourea sites and one Ln3+ ion with the central 2,6‐pyridinedicarboxamide site. In the complexes, the coordination numbers of LnIII and ZnII ions are 9 and 5, respectively. Magnetic properties of the complexes were studied by temperature‐dependent dc magnetic measurements. The observed μeff values at room temperature are all closed to the calculated values. Fitting χM and M data of [Zn2Gd(L)2(OAc)3] ( 1d ) shows a giso value of 1.94.  相似文献   

11.
Four new metal-radical complexes - [Cu(NIT3Py)2(DTB)2] 1, [Co(NIT3Py)2(DTB)2(CH3OH)2] 2, [Cu(NIT4Py)2(DTB)2(H2O)2] 3, [Co(NIT4Py)2(DTB)2(H2O)2] 4, (NIT3Py = 2-(3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], NIT4Py = 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], DTB = 3,5-dinitrobenzoic anion) have been synthesized by using transition metal ions, nitronyl nitroxide radicals as spin carriers, and incorporating 3,5-dinitrobenzoic acid (DTB) as a coligand.  相似文献   

12.
A new coordination polymer of the formula [Ni(NIT4py)2(ip)(H2O)]n(NIT4py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide and ip = isophthalate dianion) has been synthesized and characterized by elemental analyses, IR spectrum, and single‐crystal X‐ray diffraction. The coordination about each Ni2+ ion is a distorted octahedra. Each isophthalate dianion binds two Ni2+ ions in monodentate‐bidentate mode, leading to a 1‐D chain. Among the chains, the coordinated water molecules and carboxylato oxygen atoms form hydrogen bonds, generating an infinite 1‐D ladder structure of a double‐chain. The magnetic study shows that the decrease of χMT value in the low temperature for the complex is mainly ascribed to the zero‐field splitting of the distorted octahedral Ni2+ ions.  相似文献   

13.
The 1:1:2 mixture of Ln(hfac)3, Zn(hfac)2, and NIT‐Pyrim (hfac = hexafluoroacetylacetonate, NIT‐Pyrim = 2‐pyrimidine‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide) afforded a series of 2p‐3d‐4f magnetic chains [Ln(hfac)3Zn(hfac)2(NIT‐Pyrim)2] [LnIII = Gd ( 1 ), Ho ( 2 ), Yb ( 3 )], in which Zn(hfac)2 and Ln(hfac)3 units are bridged by pyrimidine substituted nitronyl nitroxides through their NO moieties and pyrimidine nitrogen atoms. These complexes represent the first examples of 2p‐3d‐4f complexes with ZnII ions. Magnetic studies show that there exist ferromagnetic exchange couplings between the coordinated NO groups of radical ligands and the GdIII ions.  相似文献   

14.
A novel heterospin one-dimensional (1-D) chain complex containing both Cu(II) and nitroxide radical ligands, {[Cu(tcph)(H2O)4][Cu(tcph)(NIT3Py)2]·2H2O} n (1) (H2tcph = tetrachloro-phthalic acid, NIT3Py = 2-(3′-pyridyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), has been synthesized and structurally characterized. The structure consists of neutral chains of copper(II) ions bridged by tcph and coordinated alternatively by nitroxide radicals as spin branches and solvated water as co-ligand. The magnetic data were fitted using an approximate theoretical model based on population analysis to obtain the coupling parameter values of J Cu2-Rad = 22.4 cm−1 and JCu1-Cu2 = −2.4 cm−1, indicating the intramolecular ferromagnetic interaction between Cu(II) and NIT3Py and weak antiferromagnetic interaction between Cu1 and Cu2 linked by tcph.  相似文献   

15.
The electronic structure and the spectroscopic properties of [Pt(NH3)4][Au(CN)2]2, [Pt(NH3)4][Ag(CN)2]2, [Pt(CNCH3)4][Pt(CN)4], and [Pt(CNCH3)4][Pd(CN)4] were studied at the HF, MP2, B3LYP, and PBE levels. In all the complexes, it was found that the nature of the intermetal interactions is consistent with the presence of a high‐ionic contribution (90%) and a dispersion‐type interaction (10%). The absorption spectra of these complexes were calculated by the single‐excitation time‐dependent (TD) method at the HF, B3LYP, and PBE levels. The [Pt(NH3)4][M(CN)2]2 (M ? Au, Ag) complexes showed a 1(dσ* → pσ) transition associated with a metal–metal charge transfer. On the other hand, the [Pt(CNCH3)4][M(CN)4] (M ? Pt, Pd) complexes showed a 1(dσ* → π*) transition associated with a metal‐to‐metal and ligand charge transfer. The values obtained theoretically are in agreement with the experimental range. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
By the solvothermal reactions of 2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalic acid (H2L) with transition‐metal ions, two novel polymeric complexes, namely, poly[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato]cobalt(II)], [Co(C12H6N6O4)(H2O)2]n, ( 1 ), and poly[[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato]nickel(II)] dihydrate], {[Ni(C12H6N6O4)(H2O)2]·2H2O}n, ( 2 ), were isolated. Both polymers have been characterized by FT–IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction analysis. The complexes have similar two‐dimensional layered structures and coordination modes. Furthermore, the two‐dimensional layered structures bear distinct intermolecular hydrogen‐bonding interactions and π–π stacking interactions to form two different three‐dimensional supramolecular networks based on 44‐subnets. The structural variation depends on the nature of the metal cations. The results of variable‐temperature magnetization measurements (χMT?T and χM?1?T) show that complexes ( 1 ) and ( 2 ) display antiferromagnetic behaviour.  相似文献   

17.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

18.
A new three-dimensional diamagnetic metal nitronyl nitroxide radical coordination polymer with an aqua cadmium cyanide framework Cd(NIT4py)(H2O)Cd(CN)4·H2O 1, was synthesized. X-ray crystallography reveals that the structure consists of 3D aqua cadmium cyanide built up by octahedral CdII coordinating to NIT4py and tetrahedral CdII (CN)4 units. Magnetic measurements show that the χmT values are nearly constant at higher temperature. The lower χmT values at lower temperature are related to intermolecular antiferromagnetic interactions of the radicals, which arise due to the hydrogen bonded network (TN = 21 K).  相似文献   

19.
Two cyano-bridged bimetallic complexes {[M2(H2O)4Mo(CN)8] · 4H2O} n [M = Mn (I) and Co (II)] have been synthesized and structurally characterized. The single-crystal X-ray analyses reveal that these two compounds have three-dimensional structures, and cell parameters are similar in a tetragonal system with space group I $ \bar 4 $ \bar 4 . In the both complexes, each [Mo(CN)8]4− building block is linked with M2+ [M = Mn and Co] ions through its eight CN ligands. Each M2+ center is connected to four Mo units forming a three-dimensional framework. In addition, magnetic studies of these complexes have been presented.  相似文献   

20.
From the 1:1 system of [Cu(dien)2](NO3)2 and K[Ag(CN)2] in water (dien is diethyl­enetri­amine, C4H13N3), the novel compound catena‐poly­[bis­[[μ‐cyano‐1:2κ2C:N‐diethyl­enetri­amine‐2κ3N‐copper(II)silver(I)]‐μ‐cyano‐1:2′κ2C:N] di­cyano­silver(I) tri­cyanodisilver(I)], [CuAg(CN)2(dien)]2[Ag(CN)2][Ag2(CN)3], has been isolated. The structure is formed from positively charged [–Cu(dien)–NC–Ag–CN–]nn+ chains and two isolated centrosymmetric [Ag(CN)2]? and [Ag2(CN)3]? anions. In the cationic chains, the Cu atoms are linked by bridging di­cyano­argentate groups, and the deformed square‐pyramidal coordination polyhedron of the CuII cation is formed from a tridentate chelate‐like bonded dien ligand and two N‐bonded bridging cyano groups. One of the bridging cyano groups occupies the apical (ap) position [mean Cu—­Neq = 2.02 (2) Å, and Cu—Nap = 2.170 (3) Å; eq is equatorial]. Short argentophilic interactions in the range 3.16–­3.30 Å are present in the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号