首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new hydrogen terminated 2,2′‐bidipyrrin ligand was prepared from a bipyrrole dialdehyde and 3,4‐diethylpyrrole by a POCl3 induced condensation and isolated as the nickel(II) chelate. Unexpectedly a side reaction occured when base‐deficient and aerobic conditions were chosen in the metalation step. This side reaction led to a novel pentapyrrolic nickel(II) complex with one externally bound pyrrole ring. Further studies showed that the reactions of 2,2′‐bidipyrrins with 3,4‐diethyl‐ or 2,3,4‐trimethylpyrrole and an oxidant resulted in a stepwise exchange of the terminal pyrrole moieties and, in the former case, the introduction of one additional pyrrole ring into one of the two meso positions of the open‐chain tetrapyrrole.  相似文献   

2.
3.
Iridium(I) and Iridium(III) Complexes with Triisopropylarsane as Ligand The ethene complex trans‐[IrCl(C2H4)(AsiPr3)2] ( 2 ), which was prepared from [IrCl(C2H4)2]2 and AsiPr3, reacted with CO and Ph2CN2 by displacement of ethene to yield the substitution products trans‐[IrCl(L)(AsiPr3)2] ( 3 : L = CO; 4 : L = N2). UV irradiation of 2 in the presence of acetonitrile gave via intramolecular oxidative addition the hydrido(vinyl)iridium(III) compound [IrHCl(CH=CH2)(CH3CN)(AsiPr3)2] ( 5 ). The reaction of 2 with dihydrogen led under argon to the formation of the octahedral complex [IrH2Cl(C2H4)(AsiPr3)2] ( 7 ), whereas from 2 under 1 bar H2 the ethene‐free compound [IrH2Cl(AsiPr3)2] ( 6 ) was generated. Complex 6 reacted with ethene to afford 7 and with pyridine to give [IrH2Cl(py)(AsiPr3)2] ( 8 ). The mixed arsane(phosphane)iridium(I) compound [IrCl(C2H4)(PiPr3)(AsiPr3)] ( 11 ) was prepared either from the dinuclear complex [IrCl(C2H4)(PiPr3)]2 ( 9 ) and AsiPr3 or by ligand exchange from [IrCl(C2H4)(PiPr3)(SbiPr3)] ( 10 ) und triisopropylarsane. The molecular structure of 5 was determined by X‐ray crystallography.  相似文献   

4.
5.
Four derivatives of the titled compounds, (8‐hydroxyquinoline)bis(2‐phenylpyridyl)iridium ( IrQ(ppy)2 ), were prepared. Two of them were confirmed by single crystal X‐ray diffraction analyses, in which solvent molecules were found to be incorporated in the crystal lattices. Their emission spectra display separated dual bands in de‐aerated solutions at about 515 and 645 nm upon excitation. These green and red emissions are attributed to the triplet metal‐to‐ligand charge transfer (3MLCT) and triplet ligand centered (3LC) transitions in Ir(ppy)2 and IrQ, respectively. It is suggested that such a multiple emission is feasible by nearly orthogonal orientation between the ppy and quinoline ligands in the mixed‐ligand Ir‐compounds which prohibits energy transfer between the two different ligands. The electroluminescence (EL) of these compounds was examined by the fabrication of light‐emitting diodes (LEDs). Unlike the spectra in solutions, their EL spectra displayed only the red emission band. Devices displaying white light can be obtained by mixing the red emission of IrQ(ppy)2 with a compatible blue emitter (NPB) in separated layers.  相似文献   

6.
7.
By two different routes, 4,4′′′′‐azobis[2,2′: 6′,2″‐terpyridine] was synthesized. Its ruthenium complexes show interesting metal‐to‐ligand charge transfer (MLCT) absorption maxima in the electronic spectra. They represent the first ruthenium complexes of terpyridine units to give blue solutions.  相似文献   

8.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

9.
In the title compound, C10H6N4O4S2, (I), the molecule has a centre of inversion. The structure is a positional isomer of 5,5′‐dinitro‐2,2′‐dithiodipyridine [Brito, Mundaca, Cárdenas, López‐Rodríguez & Vargas (2007). Acta Cryst. E 63 , o3351–o3352], (II). The 3‐nitropyridine fragment of (I) shows excellent agreement with the bonding geometries of (II). The most obvious differences between them are in the S—S bond length [2.1167 (12) Å in (I) and 2.0719 (11) Å in (II)], and in the C—Cipso—Nring [119.8 (2)° in (I) and 123.9 (3)° in (II)] and S—C—C [122.62 (18)° in (I) and 116.0 (2)° in (II)] angles. The crystal structure of (I) has an intramolecular C—H...O interaction, with an H...O distance of 2.40 (3) Å, whereas this kind of interaction is not evident in (II). The molecules of (I) are linked into centrosymmetric R44(30) motifs by a C—H...O interaction. There are no aromatic π–π stacking and no C—H...π(arene) interactions. Compound (I) can be used as a nucleophilic tecton in self‐assembly reactions with metal centres of varying lability.  相似文献   

10.
11.
The reaction of 9.10‐diaminophenanthrene with [{Rh(μ‐Cl)(ptpy)2}2] yields – quite unexpected – the new cyclometalated complex salts [Rh(ptpy)2(9,10‐diiminophenanthrene)]PF6 ( 1 ), whereas with the corresponding dinuclear iridium compound the “usual” [Ir(ptpy)2(9,10‐diaminophenanthrene)]PF6 ( 2 ) is obtained. The molecular structure of compound 1 was confirmed by single‐crystal X‐ray diffraction. 1 crystallized in the monoclinic space group P21/n as a dichloromethane solvate. Both compounds display significant cytotoxicity against human cancer cell lines with the IC50 values in the low micromolar range.  相似文献   

12.
The title compound, C23H28O2, was obtained from the reaction of acetone with meta‐cresol. The molecular structure consists of two identical subunits which are nearly perpendicular to each other. The oxygen‐containing rings are not planar and the molecule is chiral. The crystal structure consists of chains of molecules of the same chirality arranged along the [010] axis.  相似文献   

13.
In the nearly planar title compound, C15H10IN3, the three pyridine rings exhibit transoid conformations about the interannular C—C bonds. Very weak C—H...N and C—H...I interactions link the molecules into ribbons. Significant π–π stacking between molecules from different ribbons completes a three‐dimensional framework of intermolecular interactions. Four different packing motifs are observed among the known structures of simple 4′‐substituted terpyridines.  相似文献   

14.
A series of neutral Ir(III)‐based heteroleptic complexes with a formula of [Ir(η2‐(CN))22‐(SS))] ((CN) = ppy, (SS) = Et2NCS2 ( 2a ), MeOCS2 ( 2b ), EtOCS2 ( 2c ), iPrOCS2 ( 2d ); (CN) = tpy, (SS) = Et2NCS2 ( 3a ), MeOCS2 ( 3b ), EtOCS2 ( 3c ), iPrOCS2 ( 3d ); (CN) = epb , (SS) = Et2NCS2 ( 4a ), MeOCS2 ( 4a ), EtOCS2 ( 4a ); ppyH = 2‐phenylpyridine; tpyH = 2‐(4′‐tolyl)pyridine; epbH = ethyl 4‐(2′‐pyridyl)benzate) was synthesized and characterized. The crystal structure of complex 2d was also determined. The electron‐releasing substituents on (CN) or (SS) blueshift λmax values.  相似文献   

15.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

16.
The title compound, C17H13N3, is a versatile precursor for polymeric ter­pyridine derivatives and their metal complexes. The mol­ecule has transoid and near‐coplanar pyridine rings. However, the vinyl group is forced out of the plane of the terpyridyl moiety by a close H?H contact.  相似文献   

17.
18.
Introduction Optically active 1,1'-bi-2-naphthol (BINOL) and its derivatives have been widely used as chiral ligands of catalysts for asymmetric reactions and effective host compounds for the isolation or optical resolution of a wide range of organic guest molecules through the for-mation of crystalline inclusion complexes.1,2 The wide-ranging and important applications of these com-pounds in organic synthesis have stimulated great inter-est in developing efficient methods for their prepara-…  相似文献   

19.
The crystal structure of the title compound, C20H18O4, contains a crystallographic inversion center. The C—C bond linking the two halves of the mol­ecule is slightly elongated at 1.577 (3) Å.  相似文献   

20.
A series of NCP‐type pincer iridium complexes, (RNCCP)IrHCl ( 2a — 2c ) and (BQ‐NCOP)IrHCl 3 , have been studied for catalytic transfer alkane dehydrogenation. Complex 3 containing a rigid benzoquinoline backbone exhibits high activity and robustness in dehydrogenation of alkanes to form alkenes. Even more importantly, this catalyst system was also highly effective in the dehydrogenation of a wide range of heterocycles to furnish heteroarenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号