首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the ligand 6‐aza‐2‐thiothymine (ATT, HL, 1 ) with palladium chloride in methanol forms the ionic complex [(HL)4Pd]Cl2·8MeOH ( 2 ), while its reaction with palladium iodide in same solvent produces the neutral complex trans‐[(HL)2PdI2]·2MeOH ( 3 ) in high yields. The reaction of 1 with Na2[PdCl4] in the presence of sodium acetate in a molar ratio of 2:1:2 and with platinum(II) chloride in presence of sodium acetate led to the dimer tetranuclear complexes [(L4Pd2)NaCl]2·8MeOH ( 4 ) and [L4Pt2Cl2]·6MeOH·H2O ( 5 ). The latter is the first PtIII complex of the ligand. All complexes were characterized by elemental analyses and IR spectroscopy and the crystal structures of 2 , 3 , 4 and 5 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: triclinic space group , a = 1006.6(1), b = 1006.9(1), c = 1158.1(1) pm, α = 85.20(1)°, β = 83.84(1)°, γ = 88.91(1)°, Z = 1, R1 = 0.0278; for 3 at ?80 °C: triclinic space group , a = 490.5(1), b = 977.2(2), c = 1116.8(2) pm, α = 90.26(1)°, β = 102.33(1)°, γ = 96.08(1)°, Z = 1, R1 = 0.0394; for 4 at ?80 °C: orthorhombic space group Ccca, a = 1791.7(2), b = 1874.1(2), c = 2044.0(1) pm, Z = 4, R1 = 0.0341 and for 5 at ?80 °C: monoclinic space group P21/c, a = 1464.3(1), b = 2003.7(1), c = 1368.5(1) pm, β = 95.66(1)°, Z = 4, R1 = 0.0429.  相似文献   

2.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

3.
The reactions of AMTTO = 4‐amino‐6‐methyl‐1,2,4‐triazine‐thione‐5‐one (AMTTO, 1 ) with 2‐hydroxybenzaldehyde (salicylaldehyde) and 4‐hydroxybenzaldehyde in methanol under reflux conditions led to the corresponding Schiff‐bases ( H2L1 and H2L2 ). The reaction of H2L1 with palladium acetate in ethanol and additional recrystallization from toluene gave the tetrameric complex [Pd(L)]4·2C7H8 ( 2 ). All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for H2L1 at ?80 °C: space group P21/c with a = 1285.4(1), b = 707.7(1), c = 1348.2(1) pm, β = 109.32(1)°, Z = 4, R1 = 0.0328, H2L2 at ?80 °C: space group P43212 with a = 762.5(1), b = 762.5(1), c = 4038.9(2) pm, Z = 8, R1 = 0.025 and for 2 at ?103 °C: space group C2/c with a = 2862.5(6), b = 2847.6(6), c = 1727.8(4) pm, β = 105.18(3)°, Z = 8, R1 = 0.0704.  相似文献   

4.
For the first time aqua pentafluoro manganate(III) compounds with different organic N-cations have been prepared and their crystal structures have been determined: N,N′-DMenH2[MnF5(H2O)] · H2O 1 (N,N′-DMen = N,N′-Dimethylethylenediamine), space group P21/c, a = 916.0, b = 1004.8, c = 1247.9 pm, β = 106.03°, R = 0.035; NMpipzH2 · [MnF5(H2O)] · H2O 2 (NMpipz = N-Methylpiperazine), space group P21/n, a = 757.7, b = 1261.9, c = 1197.1 pm, β = 105.09°, R = 0.027; N,N′-DMpipzH2[MnF5(H2O)] · 2 HF 3 (N,N′-DMpipz = N,N′-Dimethylpiperazine), space group P1, a = 677.1, b = 863.9, c = 1187.7 pm, α = 79.18°, β = 81.63° γ = 67.62°, R = 0.026; and N,N-DMenH2[MnF5(H2O)] · 1/2 HF 4 (N,N-DMen = N,N-Dimethylethylenediamine), space group P1, a = 859.3, b = 1086.5, c = 1092.0 pm, α = 86.96°, β = 78.52° γ = 89.01°, R = 0.035. In all compounds the [MnF5(H2O)]2– octahedra are connected via H-bonds forming 3 D and 2 D network arrangements. The anions are strongly elongated by the Jahn-Teller effect. The FTIR spectra are presented.  相似文献   

5.
Alkaline Earth Fluoromanganates(III): BaMnF5 · H2O and SrMnF5 · H2O Solid BaF2 or SrF2 forms with solutions of Mn3+ in aqueous hydrofluoric acid precipitates of hitherto unknown BaMnF5 · H2 and SrMnF5 · H2O respectively. X-ray structure determination on single crystals of both isotypic compounds (space group P21/m, Z = 2; BaMnF5 · H2O: a = 537.0(3), b = 817.2(2), c = 628.0(4) pm β = 111.17(5)°, Rw = 0.035 for 1403 reflections; SrMnF5 · H2O: a = 510.8(1), b = 792.0(2), c = 610.6(1) pm, β = 110.24(1)° Rw = 0.068 for 539 reflections) reveal pure [MnF6]3? octahedra connected with each other to infinite chains by sharing trans corners. The H2O molecules are coordinated to the alkaline earth ions only and form weak O? H…F hydrogen bonds. The pronounced weakening of the Mn? F bonds within the chain direction (Mn? F 2X 212.7(1)/210.8(5) pm, 2X 183.8(3)/181.8(9) pm, 2X 186.9(2)/187.2(8) pm) may be due by halves to the Jahn-Teller-effect as can be deduced by bond valence calculations.  相似文献   

6.
The reactions of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, L1 ) with 2‐thiophen carbaldehyde, salicylaldehyde and 2‐nitrobenzaldehyde in methanol led to the corresponding Schiff‐bases ( L1a‐c ). The reaction of L1 with [(PPh3)2Cu]NO3 in ethanol gave the ionic complex [(PPh3)2Cu(L1)]NO3·EtOH ( 2 ) All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1a at 20 °C: space group P21/n with a = 439.6(2), b = 2074.0(9), c = 1112.8(4) pm, β = 93.51(3)°, Z = 4, R1 = 0.0406, L1b at ?80 °C: space group P21/n with a = 1268.9(2), b = 739.3(1), c = 1272.5(1) pm, β = 117.97(1)°, Z = 4, R1 = 0.0361, L1c at ?80 °C: space group P21/n with a = 847.8(1), b = 1502.9(2), c = 981.5(2) pm, β = 110.34(1)°, Z = 4, R1 = 0.0376 and for 2 at ?80 °C: space group with a = 1247.8(1), b = 1270.3(1), c = 1387.5(1) pm, α = 84.32(1)°, β = 84.71(1)°, γ = 63.12(1)°, Z = 2, R1 = 0.0539.  相似文献   

7.
Complex Hydroxides of Chromium: Na9[Cr(OH)6]2(OH)3 · 6 H2O and Na4[Cr(OH)6]X · H2O (X = Cl, (S2)1/2) – Synthesis, Crystal Structure, and Thermal Behaviour Green plate‐like crystals of Na9[Cr(OH)6]2(OH)3 · 6 H2O (triclinic, P1, a = 872.9(1) pm, b = 1142.0(1) pm, c = 1166.0(1) pm, α = 74.27(1)°, β = 87.54(1)°, γ = 70.69(1)°) are obtained upon slow cooling of a hot saturated solution of CrIII in conc. NaOH (50 wt%) at room temperature. In the presence of chloride or disulfide the reaction yields green prismatic crystals of Na4[Cr(OH)6]Cl · H2O (monoclinic, C2/c, a = 1138.8(2) pm, b = 1360.4(1) pm, c = 583.20(7) pm, β = 105.9(1)°) or green elongated plates of Na4[Cr(OH)6](S2)1/2 · H2O (monoclinic, P21/c, a = 580.8(1) pm, b = 1366.5(3) pm, c = 1115.0(2) pm, β = 103.71(2)°), respectively. The latter compounds crystallize in related structures. All compounds can be described as distorted cubic closest packings of the anions and the crystal water molecules with the cations occupying octahedral sites in an ordered way. The thermal decomposition of the compounds was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In all cases the final decomposition product is NaCrO2.  相似文献   

8.
The reaction of benzene 1,3,5‐trisulfonic acid (H3BTS) with the hydroxides RE(OH)3 (RE = La, Nd, Sm, Eu) in aqueous solution afforded the sulfonates [La(BTS)(H2O)5] and [RE(BTS)(H2O)4] (RE = Nd, Sm, Eu). Single crystal investigations were performed for the lanthanum and the europium compound, respectively. [La(BTS)(H2O)5] is triclinic [P$\bar{1}$ , Z = 2, a = 783.18(6) pm, b = 1056.94(8) pm, c = 1082.38(8) pm, α = 114.860(2)°, β = 96.655(3)°, γ = 104.402(3)°] whereas [Eu(BTS)(H2O)4] exhibits monoclinic symmetry [P21/n, Z = 4, a = 767.61(5) pm, b = 1730.2(1) pm, c = 1134.06(8) pm, β = 108.375(8)°]. Despite these crystallographic differences, the structural features of the lanthanum and europium compounds are very similar. They show the metal ions connected by BTS anions to layers that are further linked by hydrogen bonds. Interestingly, only two of the three sulfonate groups are connected to rare earth ions, whereas the third remains uncoordinated and acts as acceptor within the hydrogen bonds. According to powder XRD measurements the neodymium and samarium sulfonates are isotypic with the europium compound. The thermal analyses of the compounds show the dehydration in a temperature range between 100 and 300 °C, whereas the decomposition of the organic ligands takes place at temperatures as high as 550 °C. Thus the anhydrous sulfonates are much more stable than comparable salts of trimesic acid. The residues of the thermal decompositions were identified by XRD experiments.  相似文献   

9.
Synthesis and Structure of Cobalt(III) Complexes of 14-Membered cis- and trans-N2S2 Dibenzo Macrocycles with two Pendant Acetato Groups The isomeric fourteen membered macrocyclic ligands 6,7,9,15,16,18-hexahydrodibenzo[f,m][1,8]dithia[4,11]diazacyclotetradecine-8,17-diacetic acid-0.5-hydrate (H2L3), C22H26N2O4S2 · 0.5 H2O and 6,7,13,15,16,18-hexahydrodibenzo-[e,m][1,4]dithia[8,11]diazacyclotetradecine-14,17-diacetic acid-1.5-hydrate (H2L6), C22H26N2O4S2 · 1.5 H2O with cis- and trans-N2S2 donorsets and two pendant acetato groups form the stable complexes [Co(L3)]ClO4 · 2 H2O ( 1 ) and [Co(L6)]ClO4 · H2O ( 2 ). Co(III) is octahedrally coordinated herein to all six donor centers of the respective ligand. The macrocyclic rings are folded. The metal ions are located outside the macrocyclic cavity. The mean Co? N, Co? O and Co? S distances are 196, 190 and 224 pm, respectively. Crystal data: 1 , monoclinic, space group C2/c, a = 3 797.7(9), b = 763.8(3), c = 2 207.0(7) pm, β = 123.17(2), Z = 8, 3 445 reflections, R(Rw) = 0.072(0.070); 2 , monoclinic, space group C2/c, a = 3 197.1(6), b = 880.4(2), c = 1 890.6(4) pm, β = 112,19(3)°, Z = 8, 4 415 reflections, R(Rw) = 0.062(0.064).  相似文献   

10.
[Ni(phen)2(H2O)Br]Br·3H2O where phen is 1,10-phenanthroline, is a light-blue material which crystallizes in the monoclinic space group P21/c with Z = 4, a = 10.4300(4), b = 25.310(2), c = 9.7790(9)?Å and β = 102.932(6)°. The structure was determined at ambient temperature from 5161 reflections with R = 0.0643 and R w = 0.1306. The structure consists of a complex cation, a bromide anion and three waters of hydration. The Ni atom is pseudo-octahedral with a cis arrangement of Br and H2O. This cis geometry persists in solution, as evidenced by 1H NMR spectroscopy, although the Br may be replaced by another H2O. [Ni(phen)3]Br2·8H2O is a light-red material which crystallizes in the monoclinic space group C2/m with Z = 8, a = 23.6320(11), b = 21.4880(13), c = 15.5470(9)?Å and β = 107.927(3)°. The structure was determined at 120?K from 6820 reflections with R = 0.0733 and R w = 0.1022. The structure consists of a complex cation, two bromide anions and eight waters of hydration. The anions and waters are extensively disordered. The Ni atom is pseudo-octahedral.  相似文献   

11.
Synthesis and Structure of a Binuclear Gadolinium(III) Complex: Magnetic Exchange Interactions in Alkoxy Bridged Lanthanide Complexes The Schiff Base ligand N-salicylidene-2-(bis-(2-hydroxyethyl)amino)ethylamine (H3sabhea) reacts with Gd(NO3)3 · 6 H2O in methanol solution to yield the alkoxy bridged binuclear gadolinium(III) complex [{Gd(Hsabhea)(NO3)}2] · 2MeOH ( 1 ). 1 crystallizes in the monoclinic space group P21/c with a = 1014.8(2), b = 2059.2(4), c = 867.5(2) pm, β = 106.72(2)°, and Z = 2. The two gadolinium atoms are bridged by two alkoxide oxygen atoms with angles of 107.60(11)° at the oxygen bridgeheads and a Gd? Gd separation of 376.43(7) pm. A variable-temperature magnetic susceptibility study (2 to 280 K) of 1 revealed an antiferromagnetic coupling between the Gd(III) ions with J = ?0.198 cm?1 (g = 1.975).  相似文献   

12.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazin‐thione‐5‐one (H2AMTTO, 1 ) with 4‐chlorobenzaldhyde led to the corresponding iminic compound {(4‐[(4‐chloro‐benzylidene)‐amino]‐6‐methyl‐3‐thioxo[1,2,4]‐triazin‐3,4‐dihydro(2H)‐5‐one), CAMTTO ( 2 ). Treatment of 2 with copper(I) chloride in chloroform gave the dimeric complex [{(CAMTTO)2CuCl}2]·2CHCl3 ( 3 ). Treatment of 2 with copper(I) chloride and silver(I) nitrate in the presence of the co‐ligand triphenylphophane gave the complexes [(CAMTTO)CuCl(PPh3)2] ( 4 ) and [(CAMTTO)Ag(PPh3)2]NO3·2CHCl3 ( 5 ). All compounds have been characterized by elemental analyses, 1H NMR spectroscopy, IR spectroscopy, and partly by mass spectrometry and X‐ray diffraction studies. In addition 4 and 5 have been characterized by 31P{1H} NMR spectroscopy. Crystal data for 2 at ?80 °C: monoclinic, space group P21/c, a = 1370.3(1), b = 767.8(1), c = 1268.7(1) pm, β = 107.12(1)°, Z = 4, R1 = 0.0379; for 3 at ?80 °C: monoclinic, space group P21/c, a = 1442.6(2), b = 878.8(1), c = 2558.7(3) pm, β = 95.31(1)°, Z = 2, R1 = 0.0746; for 4 at ?80 °C: triclinic, space group , a = 1287.9(1), b = 1291.7(1), c = 1359.5(1) pm, α = 90.44(1)°, β = 94.81(1)°, γ = 107.54(1)°, Z = 2, R1 = 0.0359 and for 5 at ?80 °C: triclinic, space group , a = 1060.5(1), b = 1578.2(2), c = 1689.6(2) pm, α = 87.70(1)°, β = 86.66(1)°, γ = 76.84(1)°, Z = 2, R1 = 0.0487.  相似文献   

13.
New Complexes of the Lanthanoides with Bidentate Ligands. The Crystal Structures of [(C17H17N2)GdBr2(thf)2] and [(C17H17N2)3Ln] (L = Sm, Gd) Reaction of [(AIP)Li] with GdBr3 leads to a new mononuclear complex [(AIP)GdBr2(thf)2] 1 . In contrast to this with SmI2 the compound [(AIP)3Sm] 2 is build up. Such complexes are also formed with Gd(OR*)3 (R* = OtBu2C6H3) and [(AIP)Li] in a 1:3 ratio, [(AIP)3Gd] 3 . The structures of 1–3 were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (No. 33), Z = 4, a = 1 972.7(9) pm, b = 984.7(5) pm, c = 1 425.0(8) pm, α = β = γ = 90°; 2 · 2 THF: space group C2/c (No. 15), Z = 8, a = 3 644.4(9) pm, b = 1 437.5(5) pm, c = 2 334.4(7) pm, β = 1 21.07(6)°; 3 : space group P2(1)/c (No. 14), Z = 4, a = 1 872.9(1) pm, b = 1 064.6(1) pm, c = 2 282.4(2) pm, β = 103.75(8)°).  相似文献   

14.
Single crystals of fluoride hydrates Mn3F8 · 12 H2O and AgMnF4 · 4 H2O have been prepared and characterized by X-ray methods. Mn3F8 · 12 H2O crystallizes in the space group P1 (a = 623.0(3), b = 896.7(4), c = 931.8(4) pm, α = 110.07(2)°, β = 103.18(2)°, γ = 107.54(2)°, Z = 1); AgMnF4 · 4 H2O crystallizes in the space group P21/m (a = 700.9(2), b = 726.1(1), c = 749.4(3) pm, β = 107.17(3)°, Z = 2). Both structures contain Jahn-Teller-distorted [Mn(H2O)2F4]? anions as well as crystal water molecules and exhibit a complex hydrogen bond network between anions and cations, i. e. [Mn(H2O)6]2+ for the first and a polymeric [Ag(H2O)2]? cation for the second compound.  相似文献   

15.
On the Hydrates M(HSeO3)2 · 4H2O (M = Mg, Co, Ni, Zn) – Crystal Structures, IR, Raman, and Thermoanalytical Investigations From aqueous solutions of M(HSeO3)2 single crystals of Mg(HSeO3)2 · 4H2O and of the hitherto unknown compounds Co(HSeO3)2 · 4H2O, Ni(HSeO3)2 · 4H2O and Zn(HSeO3)2 · 4H2O could be obtained. The crystal structures, X-ray powder, IR, Raman and thermoanalytical (DTA, TG, Raman heating) data are presented and discussed. The crystal data of the isotypic compounds are: monoclinic, space group C2/c, Z = 4, Mg: a = 1 464.6(2), b = 755.3(1), c = 1 099.9(1) pm, β = 126.59(1)°, V = 0.9769(1) nm3, Co: a = 1 462.5(2), b = 756.5(2), c = 1 102.2(2) pm, β = 126.53(1)°, V = 0.9798(2) nm3, Ni: a = 1 452.2(2), b = 751.0(1), c = 1 091.5(1) pm, β = 126.28(1)°, V = 0.9595(1) nm3, Zn: a = 1 468.3(2), b = 755.8(1), c = 1 103.1(1) pm, β = 126.79(1)°, V = 0.9804(2) nm3. The crystal structures consist of hexagonal packed [M(HSeO3)2 · 2H2O]n chains of [MO4(H2O)2] octahedra linked by Se atoms. They contain trigonal pyramidal SeO2OH?ions with “free” hydroxyl groups and also “free” molecules of water of crystallization. The hydroxyl groups build strong H-bonds (O? H …? O distances: 265–268 pm). The IR spectra show AB doublett bands in the OH stretching mode region of the hydroxyl groups. The water molecules of crystallization are linked to planar (H2O)4 tetramers by H-bonds with unusually short O? H …? O bond distances of 271–273 pm. DTA and TG measurements indicate that thermal decomposition results in the direct formation of the respective diselenite MSe2O5. Raman heating measurements show under quasi static conditions the intermediate formation of the anhydrous hydrogen selenites.  相似文献   

16.
The reaction of of 4‐amino‐5‐ethyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AETT, L ) with furfural in methanol led to the corresponding Schiff‐Base ( L1 ). The reaction of L1 with [Cu(PPh3)2]Cl in methanol gave to the neutral compound [( L1 )Cu(PPh3)2Cl] ( 1 ). By recrystallization of 1 from CH3CN the complex [( L1 )Cu(PPh3)2Cl]·CH3CN ( 1a ) was obtained. All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1 at ?80 °C: space group with a = 788.4(1), b = 830.3(2), c = 928.8(2) pm, α = 84.53(1)°, β = 65.93(1)°, γ = 72.02(1)°, Z = 2, R1 = 0.0323; for 1 at ?100 °C: space group with a = 1166.3(1), b = 1423.8(2), c = 1489.1(2) pm, α = 62.15(1)°, β = 72.04(1)°, γ = 88.82(1)°, Z = 2, R1 = 0.0338 and for 1a at ?100 °C: space group P21/c with a = 1294.1(1), b = 1019.8(2), c = 3316.9(4) pm, β = 94.73(1)°, Z = 4, R1 = 0.0435.  相似文献   

17.
The reaction of solution 2,6‐pyridinedicarboxylic acid and 1,10‐phenanthroline ( 1 ) with CrCl3·6H2O led to the complex [Cr(phen)(pydc)(H2O)][Cr(pydc)2]·4H2O ( 2 ) (phen is 1,10‐phenanthroline and pydcH2 is 2,6‐pyridinedicarboxylic acid). 2 was characterized by elemental analysis, IR spectroscopy and single‐crystal structure determination. Crystal data for 2 at ?80 °C: triclinic, space group , a = 818.5(1), b = 1492.2(1), c = 1533.6(2) pm, α = 76.45(1)°, β = 84.22(1)°, γ = 77.99(1)°, Z = 2, R1 = 0.0416.  相似文献   

18.
Fluoroplatinates(IV) of the Lanthanides LnF[PtF6] (Ln = Pr, Sm, Gd, Tb, Dy, Ho, Er) For the first time fluorides LnF[PtF6] (Ln = Pr, Sm, Gd, Tb, Dy, Ho, Er), all yellow have been obtained. From single crystal data they crystallize monoclinic, space group P21/n?C (No. 14), Z = 4, Pr: a = 1 125.77(19) pm, b = 559.04(7) pm, c = 910.27(17) pm, β = 107.29(1)°; Sm: a = 1 114.63(31) pm, b = 552.70(12) pm, c = 898.02(20) pm, β = 107.24(2)°; Gd: a = 1 112.12(15) pm, b = 551.22(7) pm, c = 891.99(11) pm, β = 107.09(1)°; Tb (Powder data): a = 1 108.88(20) pm, b = 552.71(9) pm, c = 889.56(16) pm, β = 107.30(1)°; Dy: a = 1 100.28(23) pm, b = 547.77(8) pm, c = 882.41(13) pm, β = 107.32(1); Ho: a = 1 099.11(16) pm, b = 546.16(7) pm, c = 879.45(15) pm, β = 107.34(1)°; Er: a = 1 095.10(16) pm, b = 544.82(10) pm, c = 874.85(14) pm, β = 107.37(1)°.  相似文献   

19.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 .  相似文献   

20.
Synthesis and Crystal Structures of Chlororhenates(III) with the Divalent Cations Ethylenediammonium and Piperazinium: (EnH2)2(PipzH2) [Re3Cl12]2·6H2O, (EnH2) (PipzH2) [Re3Cl12]Cl· H2O, and (PipzH2) [Re3Cl11(H2O)] · 3H2O The deep red salt (EnH2)2(PipzH2)[Re3CI12] · 6 H2O ( 1 ), (EnH2)(PipzH2)[Re3Cl12]CI · H2O ( 2 ), and (PipzH2)[Re3Cl11(H2O)] · 3H2O ( 3 ) crystallize upon evaporation from hydrochloride acid solutions of ReCl3 on addition of ethylenediammonium chloride (EnH2Cl2) and/or piperazinium chloride (PipzH2Cl2). The crystal structures have been determined from four-circle diffractometer data. 1: monoclinic; a = 1889.63(11), b = 1615.82(8), c = 790.28(4)pm; β = 101.354(5)°; Z = 2; P21/n; R = 0.119, Rw = 0.070. 2: triclinic; a = 1330.35(4), b = 1051.14(5), c = 1165.32(6)pm; α = 122.308(4), β = 102.412(3), γ = 92.226(4)°; Z = 2, P1 ; R = 0.092, Rw = 0.059. 3: orthorhombic; a = 971.43(4), b = 1619.51(7), c = 1478.87(6)pm; Z = 4; Pbcm; R = 0.034, Rw = 0.032.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号