首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organometallic NO‐bidentate Schiff base, (2‐(1‐((1‐carboxyethyl)imino)ethyl) cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl) iron (HL) was synthesized by condensation of 2‐acetylferrocene with amino acid alanine. Then its octahedral Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) complexes were synthesized. All compounds were characterized on the basis of elemental analysis (C, H, N and M), molar conductivity, FT‐IR, UV–Vis, 1H‐NMR, SEM, mass analysis and thermal studies. Furthermore, computational studies of HL ligand have been carried out by DFT/B3LYP method. HOMO and LUMO energy values, chemical hardness‐softness, electronegativity, electrophilic index and other parameters were calculated. SEM micrographs of HL ligand and its [Cd (HL)(H2O)2Cl2].2H2O complex, showed that they were prepared in nano‐structure forms with particle size 54 and 41 nm, respectively. Antifungal and antibacterial activities of HL ligand and its metal complexes have been screened in vitro against different species such as Aspergillus fumigatus, Candida albicans, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. The synthesized compounds were evaluated for their anticancer activities against breast cancer cell line (MCF‐7) and normal melanocytes cell line (HFB‐4). It was found that [Co (HL)(H2O)2Cl2].3H2O complex had the lowest IC50 value (10.9 μg/ml) and hence was the most active one. Finally, the optimized structures of the Schiff base and its Co (II) complex have been used to accomplish molecular docking studies with receptors of 3HB5, 3MIW, 5IBV and 4WM8 to determine the most preferred mode of interaction.  相似文献   

2.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

3.
A novel bidentate Schiff base ligand (HL, Nanobidentate Ferrocene based Schiff base ligand L (has one replaceable proton H)) was prepared via the condensation of 2‐amino phenol with 2‐acetyl ferrocene. The ligand was characterized using elemental analysis, mass spectrometry, infrared (IR) spectroscopy, 1proton nuclear magnetic resonance (H‐NMR) spectroscopy, scanning electron microscopy (SEM), and thermal analysis. The corresponding 1:1 metal complexes with some transition‐metal ions were additionally characterized by their elemental analysis, molar conductance, SEM, and thermogravimetric ana1ysis (TGA). The complexes had the general formula [M(L)(Cl)(H2O)3]xCl·nH2O (M = Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)), (x = 0 for Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), x = 1 for Cr(III) and Fe(III)), (n = 1 for Cr(III), n = 3 for Mn(II) and Co(II), n = 4 for Fe(III), Ni(II), Cu(II), Zn(II), and Cd(II)). Density functional theory calculations on the HL ligand were also carried out in order to clarify molecular structures by the B31YP exchange‐correlation function. The results were subjected to molecular orbital diagram, highest occupied mo1ecu1ar orbital–lowest occupied molecular orbital, and molecular electrostatic potential calculations. The parent Schiff base and its eight metal complexes were assayed against four bacterial species (two Gram‐negative and two‐Gram positive) and four different antifungal species. The HL ligand was docked using molecular operating environment 2008 with crystal structures of oxidoreductase (1CX2), protein phosphatase of the fungus Candida albicans (5JPE), Gram(?) bacteria Escherichia coli (3T88), Gram(+) bacteria Staphylococcus aureus (3Q8U), and an androgen‐independent receptor of prostate cancer (1GS4). In order to assess cytotoxic nature of the prepared HL ligand and its complexes, the compounds were screened against the Michigan cancer foundation (MCF)‐7 breast cancer cell line, and the IC50 values of compounds were calculated.  相似文献   

4.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Transition metal complexes containing a phenoxymethylpenicillin‐derived Schiff base (HL) 3 obtained from the condensation of phenoxymethylpenicillin (PMP) 1 , with 1,2‐diaminobenzene 2 , were prepared. Spectroscopic and physicochemical techniques, namely, UV–Vis, FT‐IR, 1H‐NMR, EPR, mass spectrometry, magnetic susceptibility, molar conductance, DFT studies, together with elemental and thermal analyses were used to characterize the synthesized complexes. Based on the characterization studies, the general formulae [ML (OAc)(H2O)2] where M = Fe 4 , Co 5 , Ni 6 , Cu 7 , and Zn 8 , were proposed for the complexes. The Schiff base ligand 3 behaved as a monoanionic tridentate NNO chelating agent. On the basis of magnetic and spectral data an octahedral geometry for all the complexes was suggested. Schiff base ligand 3 , and the metal complexes 4 – 8 were tested against G(+) or bactericidal activity by agar disc diffusion method and minimal inhibitory concentration (MIC). The results were compared with the activity of the standard drug PMP 1 . In vitro bacterial viability revealed that 3  had similar activity than 1 and exhibited modification in its bactericidal activity when formed metal complexes. It was found that the complexes 4 , 6 and 7 exhibited much better bactericidal activity than 1 against methicillin‐resistant Staphilococcus Aureus (MRSA) being complex 4 the most promising compound showing a MIC value of 0.042 μmol/ml.  相似文献   

6.
Coordination compounds of Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) ions were synthesized from reaction with Schiff base ligand 4,6‐bis((E)‐(2‐(pyridin‐2‐yl)ethylidene)amino)pyrimidine‐2‐thiol (HL) derived from the condensation of 4,6‐diaminopyrimidine‐2‐thiol and 2‐(pyridin‐2‐yl)acetaldehyde. Microanalytical data, magnetic susceptibility, infrared and 1H NMR spectroscopies, mass spectrometry, molar conductance, powder X‐ray diffraction and thermal decomposition measurements were used to determine the structure of the prepared complexes. It was found that the coordination between metal ions and bis‐Schiff base ligand was in a molar ratio of 1:1, with formula [M (HL)(H2O)2] Xn (M = Mn (II), Co (II), Ni (II), Cu (II) and Cd (II), n = 2; Fe (III), n = 3). Diffuse reflectance spectra and magnetic susceptibility measurements suggested an octahedral geometry for the complexes. The coordination between bis‐Schiff base ligand and metal ions was through NNNN donor sites in a tetradentate manner. After preparation of the complexes, biological studies were conducted using Gram‐positive (B. subtilis and S. aureus) and Gram‐negative (E. coli and P. aeruginosa) organisms. Metal complexes and ligand displayed acceptable microbial activity against both types of bacteria.  相似文献   

7.
Two novel complexes, [La(HL)(H2O)2NO3] · NO3 · H2O and [Gd(HL)(H2O)2NO3] · NO3 · H2O, where HL is a Schiff base derived from o-vanillin and lysine, have been synthesized and characterized by elemental analysis, conductivity measurements, IR, 1H NMR and thermogravimetric analyses (TGA). The Schiff base ligand behaves as a tetradentate, coordinating through azomethine nitrogen, phenolic oxygen and two carboxylic oxygen atoms. The interaction of these complexes with calf thymus DNA (CT-DNA) was also investigated by spectrometric titration and viscometric measurements. The faint hypochromism of the complexes in the absorption spectra, the remarkable reduction of fluorescence intensity of ethidium bromide (EB) bound DNA, together with a small decrease in the viscosity of the DNA suggest that a partial intercalation may be the preferred binding mode between these two complexes and DNA. The antibacterial activity testing revealed that the complexes and their precursor Schiff base show a weak to moderate activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli.   相似文献   

8.
Two heterobimetallic Zn‐Nd phenylene‐bridged Schiff‐base ligands complexes [ZnNd L1 (Py)(NO3)3] ( 1 ) and [Zn L2 Nd(Py)(NO3)3]·MeCN ( 2 ) (Py = pyridine, H2L1 = N,N′‐bis‐ (3‐methoxy‐salicylidene)phenylene‐1,2‐diamine, H2L2 = N,N′‐bis‐5‐bromo‐3‐methoxy‐salicylidene)phenylene‐1,2‐diamine) were obtained. Both 1 and 2 were structurally characterized by X‐ray crystallography, and their near‐infrared (NIR) luminescent properties were determined. For the two complexes, the occupation of pyridine at the axial position of 3d Zn2+ ions could effectively prevent luminescent quenching arising from OH‐, NH‐ or CH oscillators of the solvates around the 4f Nd3+ ions, and the heavy‐atom (Br) effect of the Schiff‐base ligands on their NIR luminescent properties is also discussed.  相似文献   

9.
Salen with two aza‐crown ether pendants H2L1 and its analogues H2L2‐H2L4 were successfully synthesized starting from benzo‐10‐aza‐15crown‐5 (BN15C5) or morpholine. Their structures were characterized by IR, MS, 1H NMR and elemental analysis, and were confirmed by X‐ray diffraction analysis of H2L1. Moreover, the saturated oxygen uptake of their cobalt(II) complexes CoL1‐CoL4 in diethyleneglycol dimethyl ether was determined at different temperature. The oxygenation contants (KO2 ) and thermodynamic parameters (ΔH° and ΔS°) were calculated. The modulation of O2‐binding capabilities by pendant substituents were investigated as compared with the parent Schiff base complex CoL5 (CoSalen). The results indicate that the dioxygen affinities of CoL have been much more enhanced by aza‐crown pendants than that by morpholino pendants, and the O2‐binding capabilities of CoL1 and CoL2 with aza‐crown pendants would also be enhanced by adding alkali metal cations.  相似文献   

10.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

11.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

12.
Abstract

[Ni(L?1)(HL)(H2O)2].ClO4 with a Schiff base ligand L (HL = 3-p-tolylimino-2-butanone oxime) was prepared and structurally characterized by IR, cyclic voltammetry and X-ray diffraction methods. The nickel atom has distorted octahedral coordination consisting of four nitrogen atoms and two oxygen atoms. The equatorial plane is formed by two oxime nitrogen atoms and two imine nitrogen atoms of two Schiff base ligand (L?1 and HL) with Ni‐ N bond distances between 2.01(1) and 2.11(1)Å. Water oxygen atoms occupy axial positions with Ni‐ O bond distances of 2.06(1) and 2.15(1) Å. The oxime groups in the Schiff base ligands are coordinated to Ni atom through their nitrogen atoms. One asymmetric intramolecular hydrogen bridge between the two oxime groups is found in the title complex.  相似文献   

13.
The monomer 3‐allyl‐5‐(phenylazo)‐2‐thioxothiazolidine‐4‐one (HL) was prepared by the reaction of allyl rhodanine with aniline through diazo‐coupling reaction. Reaction of HL with Ni(II) or Co(II) salts gave polymer complexes ( 1 – 8 ) with general stoichiometries [M(HL)(Cl)2(OH2)2]n, [M(HL)(O2SO2)(OH2)2]n, [M(L)(O2NO)(H2O)2]n and [M(L)(O2CCH3)(H2O)2]n (where M = Ni(II) or Co(II)). The structures of the polymer complexes were identified using elemental analysis, infrared and electronic spectra, molar conductance, magnetic susceptibility, X‐ray diffraction and thermogravimetric analysis. The interaction between the polymer complexes and calf thymus DNA showed a hypochromism effect. HL and its polymer complexes were tested against bacterial and fungal species. Co(II) polymer complex 2 is the most effective against Klebsiella pneumoniae and is more active than penicillin. The results showed that Ni(II) polymer complex 5 is a good antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. Molecular docking was used to predict the binding between the monomer with the receptors of prostate cancer (PDB code: 2Q7L Hormone) and breast cancer (PDB code: 1JNX Gene regulation). Coats–Redfern and Horowitz–Metzger methods were applied for calculating the thermodynamic parameters of HL and its polymer complexes. The thermal activation energy of decomposition for HL is higher than that for the polymer complexes.  相似文献   

14.
Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}(thiocyanato‐κN)(triphenylphosphane‐κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and 1H NMR spectroscopy, and X‐ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with a trans conformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinating via the imine N atoms to the CuI atom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattened gauche conformation, resulting in a rather bowed shape overall for the ligand. The NCS ligand is coordinated through its N atom. The geometry around the CuI atom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.  相似文献   

15.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

16.
Three coordination polymers, namely [Co(BDC)( L )] · H2O ( 1 ), [Co(NPH)( L )] · H2O ( 2 ), and [Ni(NPH)( L )(H2O)3] · H2O ( 3 ) [H2BDC = 1, 3‐benzenedicarboxylic acid, H2NPH = 3‐nitrophthalic acid, L = N,N′‐bis(3‐pyridyl)‐terephthalamide] were hydrothermally synthesized by self‐assembly of cobalt/nickel chloride with a semi‐rigid bis‐pyridyl‐bis‐amide ligand and two aromatic dicarboxylic acids. Single crystal X‐ray diffraction analyses revealed that complexes 1 and 2 are two‐dimensional (2D) coordination polymers containing a one‐dimensional (1D) ribbon‐like Co‐dicarboxylate chain and a 1D zigzag Co‐ L chain. Although the coordination numbers of CoII ions and the coordination modes of two dicarboxylates are different in complexes 1 and 2 , they have a similar 3, 5‐connected {42.67.8}{42.6} topology. In complex 3 , the adjacent NiII ions are linked by L ligands to form a 1D polymeric chain, whereas the 1D chains does not extend into a higher‐dimensional structure due to the ligand NPH with monodentate coordination mode. The adjacent layers of complexes 1 and 2 and the adjacent chains of 3 are further linked by hydrogen bonding interactions to form 3D supramolecular networks. Moreover, the thermal stabilities, fluorescent properties, and photocatalytic activities of complexes 1 – 3 were studied.  相似文献   

17.
Coordination compounds of Fe(III), Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II) ions were synthesized from the ligand [4,4′‐((((ethane‐1,2‐diylbis(oxy))bis(2,1‐phenylene))bis(methanylylidene))bis(azanylylidene))diphenol]ethane (H2L) derived from the condensation of bisaldehyde and 4‐aminophenol. Microanalysis, magnetic susceptibility, infrared, 1H NMR and mass spectroscopies, molar conductance, X ray powder diffraction and thermal analysis were used to confirm the structure of the synthesized chelates. According to the data obtained, the composition of the 1:1 metal ion–bis‐Schiff base ligand was found to be [M(H2L)(H2O)2]Cln (M = Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II), n = 2; Fe(III), n = 3). Magnetic susceptibility measurements and reflectance spectra suggested an octahedral geometry for the complexes. Central metals ions and bis‐Schiff base coordinated together via O2 and N2 donor sites which as evident from infrared spectra. The Gaussian09 program was applied to optimize the structural formula for the investigated Schiff base ligand. The energy gaps and other important theoretical parameters were calculated applying the DFT/B3LYP method. Molecular docking using AutoDock tools was utilized to explain the experimental behaviour of the Schiff base ligand towards proteins of Bacillus subtilis (5 h67), Escherichia coli (3 t88), Proteus vulgaris (5i39) and Staphylococcus aureus (3ty7) microorganisms through theoretical calculations. The docked protein receptors were investigated and the energies of hydrogen bonding were calculated. These complexes were then subjected to in vitro antibacterial studies against several organisms, both Gram negative (P. vulgaris and E. coli) and Gram positive (S. pyogones and B. subtilis). The ligand and metal complexes exhibited good microbial activity against the Gram‐positive and Gram‐negative bacteria.  相似文献   

18.
Three linear trinuclear Schiff base complexes, {Zn[Zn(CH3COO)(C17H16N2O2)]2} ( 1 ), {Zn[Zn(CH3COO)(C25H20N2O2)]2} ( 2 ), and {Cd[Cd(CH3COO)(C18H18N2O2)]2} ( 3 ), were synthesized for the first time under solvolthermal conditions. Their structures have been characterized by elemental analyses, X-ray single crystal determinations, and infrared spectroscopy. There are three bridges across the M-M atom pairs (M is Zn for 1 and 2 , or Cd for 3 ) in each complex, involving two O atoms of a Schiff base ligand (N,N′-bis(salicylidene)-1, 3-propanediaminate (SALPD2-) for 1 , N, N′-bis(2-hydroxy-naphthalmethenylimino)-1, 3-propanediaminate (NAPTPD2-) for 2 , and N,N′-bis-(salicylidene)-1,4-butanediaminate (SALBD2-) for 3 ), and an O-C-O moiety of a μ-acetato group. In each of the complexes, the central M2+ ion is located on an inversion center and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal M2+ ions is irregular square pyramidal, with two O atoms and two N atoms of the Schiff base ligand in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal M2+ ions are mutually trans. The M…M distances are 3.050(3) Å in 1 , 3.139(2) Å in 2 , and 3.287(6) Å in 3 .  相似文献   

19.
Two novel linear trinuclear Schiff base complexes, [Ni{Ni(C17H14Br2N2O2)(NO3)(H2O)}2] · 2MeOH · 2H2O ( 1 ), and [Cd{Ni(C25H20N2O2)(CH3COO)}2] ( 2 ), were synthesized and characterized by elemental analyses, infrared spectroscopy, and X‐ray single crystal determinations. There are three bridges across the Ni‐M atom pairs (M is Ni for 1 , and Cd for 2 ) in each complex, involving two phenolate O atoms of a Schiff base ligand (N,N′‐bis(5‐bromosalicylidene)‐1,3‐propanediaminate (BSPD) for 1 and N,N′‐bis(2‐hydroxynaphthylmethenylimino)‐1,3‐propanediaminate (HNPD) for 2 ), and an O‐N‐O moiety of a μ‐nitrato group for 1 or an O‐C‐O moiety of a μ‐acetato group for 2 . In each of the complexes, the central M2+ is located on an inversion center and has an octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging nitrate or acetate group in the axial positions. The coordination around the terminal Ni2+ ions is also octahedral for 1 , but square pyramidal for 2 . The nitrate or acetate bridges linking the central and terminal metal ions are mutually trans. The Ni···M distances are 3.006(2) Å in 1 , and 3.175(2) Å in 2 .  相似文献   

20.
Condensation of 1H-indole-2,3-dione (isatin) with (R)-(Ar)-ethylamines gives enantiopure Schiff bases, 3-{(R)-(Ar)-ethylimino}-1,3-dihydro-indol-2-one (HL) {Ar?=?Ph (HL1), 2-MeOC6H4 (HL2), 4-MeOC6H4 (HL3), 4-BrC6H4 (HL4), and 1-naphthyl (HL5)}. The Schiff bases readily coordinate to [Rh(μ-O2CMe)(η4-cod)]2 (cod?=?1,5-cyclooctadiene) to give mononuclear [Rh(η4-cod){3-((R)-(Ar)-ethylimino)-3H-indol-2-olato}] {Ar?=?Ph (1), 4-MeOC6H4 (2), and 4-BrC6H4 (3)}, respectively. The Schiff bases and complexes have been fully characterized by IR, UV-Vis, 1H-NMR, mass, and circular dichroism (CD) spectrometry. Polarimetry and CD measurements show the enantiopurity of the Schiff bases as well as the complexes. 1H NMR measurements reveal slow conversion of the lactam to the enol form of the Schiff bases in solution. In the solid state the lactam form dominates as shown by crystal structures of HL1 and HL4. While gross structural features of both are similar, the molecules differ significantly in the relative orientations of the aryl and lactam rings. The difference is mostly rotation about the N2–C9 bond with different C8–N2–C9–C11 torsion angle of +89.77(12)° for HL1 and C2–N2–C9–C11 of +106.8(3)° for HL4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号