首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New Phosphido-bridged Multinuclear Complexes of Ag, Cd and Zn. The Crystal Structures of [Ag4(PPh2)4(PMe3)4], [Ag6(PPh2)6(PtBu3)2] and [M4Cl4(PPh2)4(PnPr3)2] (M = Zn, Cd) AgCl reacts with Ph2PSiMe3 in the presence of a tertiary Phosphine PMe3 or PtBu3 to form the multinuclear complexes [Ag4(PPh2)4(PMe3)4] ( 1 ) and [Ag6(PPh2)6(PtBu3)2] ( 2 ). In analogy to that MCl2 reacts with Ph2PSiMe3 in the presence of PnPr3 to form the two multinuclear complexes [M4Cl4(PPh2)4(PnPr3)2] (M = Zn ( 3 ), Cd ( 4 )). The structures were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (Nr. 33), Z = 4, a = 1 313.8(11) pm, b = 1 511.1(6) pm, c = 4 126.0(18) pm, 2 : space group P1 (Nr. 2), Z = 2, a = 1 559.0(4) pm, b = 1 885.9(7) pm, c = 2 112.4(8) pm, α = 104.93(3)°, β = 94.48(3)°, γ = 104.41(3)°; 3 : space group C2/c (Nr. 15), Z = 4, a = 2 228.6(6) pm, b = 1 847.6(6) pm, c = 1 827.3(6) pm, β = 110.86(2); 4 : space group C2/c (Nr. 15), Z = 4, a = 1 894.2(9) pm, b = 1 867.9(7) pm, c = 2 264.8(6) pm, β = 111.77(3)°). 3 and 4 may be considered as intermediates on the route towards polymeric [M(PPh2)2]n (M = Zn, Cd).  相似文献   

2.
Hydroxoplatinic Acid and its Ammonium Salt Single crystals of platinic acid H8PtO6 and its ammonium salt have been prepared. The crystal structure of H8PtO6, monoclinic, space group C2/c—C2h6, with a = 847.0, b = 719.5, c = 745.1 pm, β 93.54° and Z = 4, contains molecules which are connected by strong hydrogen bonds with oxygen-oxygen distances of 259 to 266 pm. The ammonium salt has a rhombohedral lattice with hexagonal lattice constants of a = 705.7, c = 1182.0 pm, and Z = 3.  相似文献   

3.
Preparation and Crystal Structure of Ag2O3 The novel compound Ag2O3 was obtained by anodic oxidation of aqueous solutions of AgBF4, AgClO4, and AgPF6. According to single crystal investigations Ag2O3 belongs to the orthorhombic crystal system (Fdd2; a = 1286.9(1), b = 1049.0(1), c = 366.38(5) pm; Z = 8; 309 independent diffractometer data; R = 1.2%). Ag2O3 is isostructural to Au2O3 and contains silver square-planarly coordinated by oxygen. The AgO4 groups are connected via common vertices forming a 3-d framework.  相似文献   

4.
Colourless octahedral single crystals of solvent‐free Ag2[B12Cl12] (cubic, Pa3¯; a = 1238.32(7) pm, Z = 4) are obtained by the metathesis reaction of Cs2[B12Cl12] with an aqueous solution of silver nitrate (AgNO3) and recrystallization of the crude product from water. The crystal structure is best described as a distorted anti‐CaF2‐type arrangement in which the quasi‐icosahedral [B12Cl12]2— anions (d(B—B) = d(B—Cl) = 177—180 pm) are arranged in a cubic closest‐packed fashion. The tetrahedral interstices are filled with Ag+ cations which are strongly displaced from their ideal positions. Thereby each silver atom gets coordinated by six chlorine atoms from the edges of three [B12Cl12]2— anions providing a distorted octahedral coordination sphere to the Ag+ cations (d(Ag—Cl) = 283—285 pm, CN = 6).  相似文献   

5.
Crystal Structure and Phase Transitions of As(CH3)4I The crystal structure of α-As(CH3)4I at room temperature was determined using single crystal data: cubic, space group Pa3 , a = 1 198.0(2) pm. Therefore α-As(CH3)4I displays a novel crystal structure, which is not comparable to known AB-Typ structures with respect to the arrangement of anions and the baricenters of the complex cations. Differential thermal analysis showed three phase transitions at 103, 175 and 215°C. The lattice parameters of the high temperature phases (temperature dependent Guinier measurements) are: β-As(CH3)4I (tetragonal): a = 845.2(2) pm, c = 615.0(2) pm; γ-As(CH3)4I (hexagonal): a = 737.7(2) pm, c = 1 082.2(3) pm; and to δ-As(CH3)4I (hexagonal): a = 705.8(2) pm, c = 1 147(1) pm. β-and γ-As[(CH3)]4I are isotypic to N(CH3)4Cl and As(CH3)4Br, respectively.  相似文献   

6.
Synthesis, Vibrational Spectra, and Crystal Structures of the Nitrato Argentates (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN and (Ph4P)[Ag2(NO3)3] Tetraphenylphosphonium bromide reacts in acetonitril suspension with excess silver nitrate to give (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN ( 1 ), whereas (Ph4P)[Ag2(NO3)3] ( 2 ) is obtained in a long‐time reaction from (Ph4P)Br and excess AgNO3 in dichloromethane suspension. Both complexes were characterized by vibrational spectroscopy (IR, Raman) and by single crystal structure determinations. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1781.5(3), b = 724.8(1), c = 2224.2(3) pm, β = 96.83(1)°, R1 = 0.0348. 1 contains isolated complex units [Ag(NO3)2(CH3CN)]?, in which the silver atom is coordinated by the chelating nitrate groups and by the nitrogen atom of the solvated CH3CN molecule with a short Ag—N distance of 220.7(4) pm. 2 : Space group I2, Z = 4, lattice dimensions at 193 K: a = 1753.4(4), b = 701.7(1), c = 2105.5(4) pm, R1 = 0.072. In the polymeric anions [Ag2(NO3)3]? each silver atom is coordinated in a chelating manner by one nitrate group and by two oxygen atoms of two bridging nitrate ions. In addition, each silver atom forms a weak π‐bonding contact with a phenyl group of the (Ph4P)+ ions with shortest Ag···C separations of 266 and 299 pm, respectively, indicating a (4+1) coordination of silver atoms.  相似文献   

7.
Preparation and Crystal Structure of PtI3, a Mixed-valence Platinum (II, IV) Iodide PtI3 was obtained by thermal decomposition of PtI4 in a closed system at 300°C and 8 atm iodine pressure. Single crystals were formed by the reaction of PtI4 with aqueous solutions of KI and I2 at 270°C. The crystal structure of the monoclinic compound (a = 673.5(2) pm; b = 1206.1(4) pm; c = 1331.3(5) pm; β = 101.25(6)°; Z = 8; space group C2/c-C2h6) contains square planar PtI4 and octahedral PtI6 groups which are connected by common edges to chains.  相似文献   

8.
On the Crystal Structure of MnF3 and MnPtF6 Single crystal investigations of MnF3 (rubyred) confirmed the crystal structure based on powder data [2]: monoclinic, space group C 2/c?C (No. 15) with a = 892.02 pm, b = 504.72 pm, c = 1 347.48 pm, β = 92.64° with Z = 12. The corresponding determination of the crystal structure of MnPtF6, yellow, confirmed the unit cell [3] with a = 510.47 pm, c = 1 421.0 pm and γ = 120°, Z = 3 space group R 3 -C (No. 148). For both compounds detailed parameters respectively interatomic distances have been obtained.  相似文献   

9.
Synthesis and Structure of Ag7M6F31 (M = Zr, Hf, Ce) Colorless single crystals of Ag7Zr6F31 have been obtainend by heating up a mixture of AgF and ZrF4 in a closed goldtube (T = 450 °C, t ∼ 2 d). The compound crystallizes trigonal, space group R3‐C (No. 148) with a = 1400,9(3) pm, c = 979,0(2) pm, Z = 3. Also prepared were the isotypic compounds Ag7Hf6F31 with a = 1393,8(2) pm, c = 978,7(2) pm, and Ag7Ce6F31 with a = 1469,8(1) pm, c = 998,5(1) pm.  相似文献   

10.
The silver cyanoguanidine complexes [Ag(cgn)2]F ( 1 ), [Ag(cgn)2][BF4] ( 2 ), [Ag(cgn)2][ClO4] ( 3 ) and [Ag(cgn)][NO3] ( 4 ) were obtained from aqueous solutions of the corresponding silver salts and cyanoguanidine. The crystal structures of 1 and 2 have been determined by single crystal X‐ray diffraction. 1 : Space group P1¯, Z = 2, cell constants at —65 °C: a =618.18(3), b = 761.49(8), c = 971.2(1) pm; α = 93.56(1), β = 97.439(8), γ = 97.376(9)β; R1 = 0.0218 2 : Space group P1¯, Z = 2, cell constants at —65 °C: a = 549.79(9), b = 958.17(17), c = 1121.04(12) pm; α = 90.026(13), β = 102.520(11), γ = 95.937(14)°; R1 = 0.0283.  相似文献   

11.
Crystal structure of AgIIF[AgIIIF4] For the first time dark brown single crystals of mixedvalent AgF[AgF4] were isolated under solvothermal conditions out of anhydrous HF/F2. The compound crystallizes in a new type of structure, triclinic with a = 499.9(2) pm, b = 1108.7(5) pm, c = 735.7(3) pm, α = 90.05(3)°, β = 106.54(4)°, γ = 90.18(4)°, spcgr. P1¯ — Ci1 (No. 2) and Z = 4.  相似文献   

12.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

13.
Crystal Structures of [Et3PNAsPh3]2[Ag2Br4] and [Et3PNAsPh3]2[Pd2Br6] Colourless single crystals of [Et3PNAsPh3]2[Ag2Br4]( 1 ) and red single crystals of [Et3PNAsPh3]2[Pd2Br6]( 2 ) have been isolated from saturated solutions in acetonitrile of equivalent mixtures of [Et3PNAsPh3]Br with AgBr and PdBr2, respectively. Both complexes were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group P1¯, Z = 1, lattice dimensions at ‐70°C: a = 985.0(2), b = 1042.2(5), c = 1345.8(5) pm, α = 102.88(2)°, β = 105.73(2)°, γ = 94.94(2)°, R1 = 0.0577. 2 : Space group P21/c, Z = 2, lattice dimension at ‐70°C: a = 1003.0(1), b = 1371.8(2), c = 1974.0(1) pm, β = 93.30(1)°, R1 = 0.0458. The dimeric anions of 1 and 2 form planar, centrosymmetric complex units.  相似文献   

14.
Ternary Halides of the A3MX6 Type. III [1, 2]. Synthesis, Structures, and Ionic Conductivity of the Halides Na3MX6 (X = Cl, Br) The bromides Na3MBr6 crystallize with the stuffed LiSbF6-type structure (type I; M = Sm? Gd) or with the structure of the mineral cryolite (type II; M = Gd? Lu). The structure types were refined from single crystal X-ray data (Na3SmBr6: trigonal, space group R3 , a = 740.8(2) pm, c = 1 998.9(8) pm, Z = 3; Na3YBr6: monoclinic, space group P21/n, a = 721.3(4) pm, b = 769.9(2) pm, c = 1 074.8(4) pm, β = 90.60(4)°, Z = 2). Reversible phase transitions from one structure to the other occur. The phase transition temperatures were determined for the bromides as well as for the chlorides Na3MCl6 (M = Eu? Lu). The refinement of both structures for one compound was possible for Na3GdBr6 (I: trigonal, space group R3 , a = 737.1(5) pm, c = 1 887(2) pm, Z = 3; II: monoclinic, space group P21/n, a = 725.2(1) pm, b = 774.1(3) pm, c = 1 080.1(3) pm, β = 90.76(3)°, Z = 2). All compounds exhibit ionic conductivity of the sodium ions which decreases with the change from type I to type II. The conductivity of the bromides is always higher when compared with the respective chlorides.  相似文献   

15.
Chlorotitanates (II): RbTiCl3 and CsTiCl3 RbTiCl3 and CsTiCl3 are obtained as shiny black single crystals by synproportionation of appropriate amounts of RbCl (CsCl), Ti and TiCl3 in sealed tantalum containers (700°C, 3 d, cooled down with 2 deg/h). The structure determination from single crystal data confirms the assumed isotypism with CsNiCl3 (hexagonal, P63/mmc, Z = 2; RbTiCl3: a = 711.73(4), c = 599.96(11) pm; CsTiCl3: a = 730.18(11), c = 605.3(3) pm).  相似文献   

16.
17.
The silver iodate(VII), Ag5IO6, was obtained by reacting a stoichiometric mixture of Ag2O and KIO3, at elevated oxygen pressure, adding a small portion of distilled water. The synthesis was done at 673 K and 270 MPa of oxygen pressure. The crystal structure was solved by direct methods based on single crystal diffraction data ( , Z = 6, a = 5.9366(1), c = 32.1471(6) Å, 323 independent reflections, R1 = 2.31 %). According to conductivity measurements, Ag5IO6 is semiconducting with a specific resistance of 0.08 Ωcm at 300 K. The activation energy was determined as 7.4(1) meV in the temperature range of 220 – 300 K, and 4.3(1) meV in the temperature range of 90 – 180 K. The optical band gap for Ag5IO6 is 1.4 eV. Ag5IO6 is diamagnetic with a magnetic susceptibility of ?4.4×10?4 emu/mol.  相似文献   

18.
Beyond the Conventional Number of Electrons in M6X12 Type Metal Halide Clusters: W6Cl18, (Me4N)2[W6Cl18], and Cs2[W6Cl18] Black octahedral single crystals of W6Cl18 were obtained by reducing WCl4 with graphite in a silica tube at 600 °C. The single crystal structure refinement (space group R 3¯, Z = 3, a = b = 1498.9(1) pm, c = 845.47(5) pm) yielded the W6Cl18 structure, already reported on the basis of X‐ray powder data. (Me4N)2[W6Cl18] and Cs2[W6Cl18] were obtained from methanolic solutions of W6Cl18 with Me4NCl and CsCl, respectively. The structure of (Me4N)2[W6Cl18] was refined from X‐ray single crystal data (space group P 3¯m1, Z = 1, a = b = 1079.3(1) pm, c = 857.81(7) pm), and the structure of Cs2[W6Cl18] was refined from X‐ray powder data (space group P 3¯, Z = 1, a = b = 932.10(7) pm, c = 853.02(6) pm). The crystal structure of W6Cl18 contains molecular W6Cl18 units arranged as in a cubic closest packing. The structures of (Me4N)2[W6Cl18] and Cs2[W6Cl18] can be considered as derivatives of the W6Cl18 structure in which 2/3 of the W6Cl18 molecules are substituted by Me4N+ ions and Cs+ ions, respectively. The conventional number of 16 electrons/cluster is exceeded in these compounds, with 18 electrons for W6Cl18 and 20 electrons for (Me4N)2[W6Cl18] and Cs2[W6Cl18]. Cs2[W6Cl18] exhibits temperature independent paramagnetic behaviour.  相似文献   

19.
Novel Silver‐Telluride Clusters Stabilised with Bidentate Phosphine Ligands: Synthesis and Structure of {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)}, [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl], and [Ag38Te13(Te t Bu)12(Ph2P(CH2)2PPh2)3] Bidentate phosphine ligands have been found effective to stabilise polynuclear cores containing silver and chalcogenide ligands. They can act as intra and intermolecular bridges between the silver centres. The clusters {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)} ( 1 ), [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl] ( 2 ), and [Ag38Te13(TetBu)12(Ph2P(CH2)2PPh2)3] ( 3 ) have been prepared and their molecular structure determined. Compound 2 and 3 are molecular structures with separated cluster cores while 1 forms a polymeric chain bridged by phosphine ligands. ( 1 : space group P21/c (No. 14), Z = 4, a = 3518,1(7) pm, b = 2260,6(5) pm, c = 3522,1(7) pm, β = 119,19(3)°; 2 : space group R3 (No. 148), Z = 6, a = b = 3059,4(4) pm, c = 5278,8(9) pm; 3: space group Pccn (No. 56), Z = 4, a = 3613,0(9) pm, b = 3608,6(7) pm, c = 2153,5(8) pm)  相似文献   

20.
Crystal and Molecular Structure of the Solventfree Hexamethyldisilazides of Rubidium and Cesium and the Crystal Structure of a Toluene Solvate X-ray crystal structures are reported for the dimeric rubidium and cesium hexamethyldisilazides [MN(SiMe3)2]2. [RbN(SiMe3)2]2 ( 1 ) crystallizes in the monoclinic space group P21/c with a = 1044.7(2), b = 891.1(2), c = 1281.0(3) pm, β = 100.26(2) °, Z = 2. [CsN(SiMe3)2]2 ( 2 ) crystallizes in the orthorhombic space group Pbca with a = 1270.81(2), b = 1281.16(1), c = 1539.65(2) pm, Z = 4. Both compounds contain a four-membered [M–N–]2-ring located on an inversion centre. The M–N bond lengths are: 287.8(2), 295.6(2) pm ( 1 ) and 307.4(2), 314.9(2) pm ( 2 ). The solvate [CsN(SiMe3)2]2 · C7H8 ( 3 ) crystallizes from toluene in the triclinic space group P1 with a = 854.00(2), b = 979.58(2), c = 1084.45(3) pm, α = 111.482(1), β = 93.821(1), γ = 108.546(1)°, Z = 1. In this compound dimeric units [CsN(SiMe3)2]2 and toluene molecules form a polymeric chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号