首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

2.
The brown crystals of [PMePh3]2[Se2Br6] ( 1 ) and red crystals of [PMePh3]2[SeBr6(SeBr2)2] ( 2 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of methyltriphenylphosphonium bromide. The crystal structures of 1 and 2 has been determined by the X‐ray methods and refined to R = 0.0373 for 2397 reflections and 0.0397 for 3417 reflections, respectively. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 13.202(5) Å, b = 11.954(4) Å, c = 13.418(6) Å, β = 93.08(4)° (193(2)). The crystals of 2 are triclinic, space group with the cell dimensions a = 10.266(3) Å, b = 11.311(3) Å, c = 11.619(2) Å, α = 108.87(2)°, β = 105.72(2)°, γ = 99.40(2)° (193(2) K). In the solid state structure of 1 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square planar SeBr4 units sharing a common edge through two μ‐bridging Br atoms. The terminal SeII–Br bonds are 2.3984(11) and 2.4273(11) Å, whereas the bridging μBr–SeII bonds are 2.7817(11) and 2.9081(12) Å. In the solid state the trinuclear [SeBr6(SeBr2)2]2? anion of 2 is centrosymmetric too and contains a nearly regular [SeBr6] octahedron where the four equatorial bromo ligands each have developed bonds to the SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0603(15) and 3.1043(12) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The SeIV–Br distances are in the range 2.5570(9)–2.5773(11) Å and the SeII–Br bond lengths in coordinated SeBr2 molecules – 2.3411(12) and 2.3421(10) Å.  相似文献   

3.
Dark brown crystals of [NnPr4]2[TeBr6(SeBr2)2] ( 1 ) were obtained when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and tetrapropylammonium bromide. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 14.7870(3) Å, b = 9.5523(3) Å, c = 16.7325(3) Å, β = 110.56(10)° (at 123(2) K). In the solid state the [TeBr6(SeBr2)2]2– anion contains a nearly regular [TeBr6] octahedron in which the four equatorial bromo ligands have developed bonds to SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0000(4) and 3.0561(4) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The TeIV–Br distances are in the range 2.6816(3)–2.7131(3) Å and the SeII–Br bond lengths in the coordinated SeBr2 molecules are 2.3548(4) and 2.3725(4) Å.  相似文献   

4.
Brown crystals of [PMePh3]2[TeBr6(SeBr2)2] ( 1 ) were obtained when selenium and bromine (1:1) react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriphenylphosphonium bromide. The salt 1 crystallizes in the triclinic space group P1¯ with the cell dimensions a = 10.3630(14)Å, b = 11.5140(12)Å, c = 11.7605(17)Å, α = 108.643(9)°, β = 106.171(10)° and γ = 99.077(9)° (296 K). In the solid state the [TeBr6(SeBr2)2]2— anion contains a nearly regular [TeBr6] octahedron where the four equatorial bromo ligands each have developed a bond to the SeII atom of a SeBr2 molecule. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are observed in the range 3.11—3.21Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The TeIV—Br distances are in the range 2.67—2.72Å, and the SeII—Br bond lengths in coordinated SeBr2 molecules in the range 2.33—2.34Å.  相似文献   

5.
Brown crystals of [NMe4]4[(Se4Br10)2(Se2Br2)2] ( 1 ) were obtained from the reaction of selenium and bromine in acetonitrile in the presence of tetramethylammonium bromide. The crystal structure of 1 was determined by X‐ray diffraction and refined to R = 0.0297 for 8401 reflections. The crystals are monoclinic, space group P21/c with Z = 4 and a = 12.646(3) Å, b = 16.499(3) Å, c = 16.844(3) Å, β = 101.70(3)° (123 K). In the solid‐state structure, the anion of 1 is built up of two [Se4Br10]2– ions. Each shows a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging bromine atoms, and one SeBr2 molecule, which is linked to the SeII atoms of two SeBr4 units; between the Se4Br102– ions a dimerized Se2Br2 molecule (Se4Br4) is situated and one SeI atom of each Se2Br2 molecule has two weak contacts [3.3514(14) Å and 3.3952(11) Å] to two bromine atoms of one SeBr4 unit. Four SeI atoms of a dimerized Se2Br2 molecule are in a almost regular planar tetraangular arrangement. Contacts between the SeII atom of the SeBr2 molecule and the SeII atoms of two SeBr4 units are 3.035(1) Å and 3.115(1) Å, and can be interpreted as donor‐acceptor type bonds with the SeII atoms of SeBr4 units as donors and the SeBr2 molecule as acceptor. The terminal SeII–Br and μ3‐Br–SeII bond lengths are in the ranges 2.3376(10) to 2.4384(8) Å and 2.8036(9) to 3.3183(13) Å, respectively. The bond lengths in the dimerized Se2Br2 molecule are: SeI–SeI = 2.2945(8) Å and 3.1398(12), SeI–Br = 2.3659(11) and 2.3689(10) Å.  相似文献   

6.
Red crystals of [NMeEt3]2n[TeBr6(Se2Br2)3]n ( 1 ) were isolated when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriethylammonium bromide (1:2). The salt 1 crystallizes in the monoclinic space group C2/c with the cell dimensions a = 27.676(6) Å, b = 9.665(2) Å, c = 18.796(4) Å and ß = 124.96(3)° (120 K). The [TeBr6(Se2Br2)3]2— anions contain nearly regular octahedral [TeBr6]2— ions which are incorporated into a polymeric chain by bonding contacts between 3 facial bromo ligands and 3 Se2Br2 molecules, one of which is situated on the twofold symmetry axis. The distances between the μBr ligands and the SeI atoms of the Se2Br2 molecules are observed in the range 3.308(2) — 3.408(2) Å and can tentatively be interpreted as donor‐acceptor bonds with μBr as donors and Se2Br2 as acceptors. The TeIV—Br distances are in the range 2.669(1) — 2.687(1) Å. The bond lengths in the connecting Se2Br2 molecules are: SeI—SeI = 2.267(2) and 2.281(2) Å, SeI—Br = 2.340(1), 2.353(1) and 2.337(1) Å.  相似文献   

7.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

8.
Dark red single crystals of Sm2O2I were obtained from a reaction of SmI2 (in the presence of SmOI) and Na in a sealed tantalum ampoule at 650 °C. The title compound crystallizes in the monoclinic system (C2/m, Z = 4, a = 12.639(2), b = 4.100(1), c = 9.762(3) Å, β = 117.97(2)°). The structure consists of corrugated [Sm2+Sm3+(O2?)2]+ layers of edge and vertex‐connected Sm4O tetrahedral units with I? anions separating the layers.  相似文献   

9.
Thallium sesquibromide Tl2Br3 is dimorphic. Scarlet coloured crystals of α‐Tl2Br3 were obtained by reactions of aqueous solutions of TlBr3 and Tl2SO4 in agarose gel. In case of rapid crystallisation of hydrous TlBr3/TlBr solutions and from TlBr/TlBr2 melts ß‐Tl2Br3 is formed as scarlet coloured, extremely thin lamellae. The crystal structures of both forms are very similar and can be described as mixed‐valence thallium(I)‐hexabromothallates(III) Tl3[TlBr6]. In the monoclinic unit cell of α‐Tl3[TlBr6] (a = 26.763(7) Å; b = 15.311(6) Å; c = 27.375(6) Å; β = 108.63(2)°, Z = 32, space gr. C2/c) the 32 TlIII‐cations are found in strongly distorted octahedral TlBr6 groups. The 96 TlI cations are surrounded either by four or six TlBr6 groups with contacts to 8 or 9 Br neighbors. Crystals of β‐Tl3[TlBr6] by contrast show almost hexagonal metrics (a = 13.124(4) Å, b = 13.130(4) Å, c = 25.550(7) Å, γ = 119.91(9)°, Z = 12, P21/m). Refinements of the parameters revealed structural disorder of TlBr6 units, possibly resulting from multiple twinning. Both structures are composed of Tl2[TlBr6] and Tl4[TlBr6]+ multilayers, which alternate parallel (001). The structural relationships of the complicated structures of α‐ and β‐Tl3[TlBr6] to the three polymorphous forms of Tl2Cl3 as well as to the structures of monoclinic hexachlorothallates M3TlCl6 (M = K, Rb) and the cubic elpasolites are discussed.  相似文献   

10.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

11.
Bis(N‐acetyltriethylphosphaneiminium)‐tetraacetato‐dichloro‐dicuprate(II), [MeC(O)N(H)PEt3]2[Cu2(O2C–Me)4Cl2] The title compound has been prepared by the reaction of Me3SiNPEt3 with [Cu2(O2C–Me)4] and MeC(O)Cl in dichloromethane solution to give colourless crystals which include four molecules CH2Cl2 per formula unit. The complex is characterized by IR spectroscopy and by a crystal structure determination. [MeC(O)N(H)PEt3]2[Cu2(O2C–Me)4Cl2] · 4 CH2Cl2: Space group P21/n, Z = 2, lattice dimensions at –70 °C: a = 794.1(1), b = 2356.9(6), c = 1327.3(2) pm; β = 91.00(1)°; R1 = 0.0597. The structure consists of N‐acetyltriethylphosphaneiminium cations and dianions [Cu2(O2C–Me)4Cl2]2– which form an iontriple with N–H…Cl hydrogen bridges.  相似文献   

12.
The reaction of sodium benzoxasulfamate (nbs) with cadmium(II) and mercury(II) sulfate in aqueous solution yield the novel complexes [Cd(nbs)2(H2O)4] (1) and [Hg(nbs)2(H2O)3] ( 2 ), respectively. The complexes were characterized by elemental analyses, IR spectroscopy and X‐ray crystallography. Complex 1 is monomeric and has an octahedral arrangement in which the N‐donor nbs ligands occupy the axial positions, while the water oxygen atoms form the equatorial plane. Complex 2 is polymeric and shows a pentagonal bipyramidal arrangement achieved by the bridging of the HgN2O3 units through the weak interaction of the O atoms of the nitro group. The nbs ligands also occupy the axial positions of the pentagonal bipyramid, whereas three water and two nitro oxygen atoms constitute the pentagonal plane. The crystal structure packing in both crystals is achieved by the intermolecular hydrogen bonds involving water hydrogen atoms, nitro and sulfonyl oxygen atoms.  相似文献   

13.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

14.
Light‐yellow single crystals of the mixed‐valent mercury‐rich basic nitrate Hg8O4(OH)(NO3)5 were obtained as a by‐product at 85 °C from a melt consisting of stoichiometric amounts of (HgI2)(NO3)2·2H2O and HgII(OH)(NO3). The title compound, represented by the more detailed formula HgI2(NO3)2·HgII(OH)(NO3)·HgII(NO3)2·4HgIIO, exhibits a new structure type (monoclinic, C2/c, Z = 4, a = 6.7708(7), b = 11.6692(11), c = 24.492(2) Å, β = 96.851(2)°, 2920 structure factors, 178 parameters, R1[F2 > 2σ(F2)] = 0.0316) and is made up of almost linear [O‐HgII‐O] and [O‐HgI‐HgI‐O] building blocks with typical HgII‐O distances around 2.06Å and a HgI‐O distance of 2.13Å. The Hg22+ dumbbell exhibits a characteristic Hg‐Hg distance of 2.5079(7) Å. The different types of mercury‐oxygen units form a complex three‐dimensional network exhibiting large cavities which are occupied by the nitrate groups. The NO3? anions show only weak interactions between the nitrate oxygen atoms and the mercury atoms which are at distances > 2.6Å from one another. One of the three crystallographically independent nitrate groups is disordered.  相似文献   

15.
The title compounds 3‐5 are accessible by treatment of P(C6H4CH2NMe2)3( 1 ) with CuX ( 2a : X = Cl, 2b : X = Br, 2c : X = I) in the ratio of 1:1 or 1:2 in very good yields. Reaction of 1 with equimolar amounts of 2a affords the copper(I) chloride [P(C6H4CH2NMe2)3]CuCl ( 3 ). With a further equivalent of 2a homobimetallic [P(C6H4CH2NMe2)3]Cu2Cl2 ( 4 ) is formed, which also can be synthesized by the reaction of 1 with two equivalents of 2a. Complex 3 reacts with CuX (X = Br, I)to afford [P(C6H4CH2NMe2)3]Cu2ClX ( 5a : X = Br; 5b : X = I) in which mixed halides are present. The newly synthesized complexes 3‐5 were characterized by elemental analyses, by their IR‐, 1H‐, 13C{1H}‐ and 31P{1H}‐NMR spectra as well as by mass spectrometrical studies. The solid‐state structures of complexes 3 and 4 are reported. Mononuclear 3 crystallizes in the monoclinic space group P21/c with the cell parameters a = 14.285(2), b = 10.853(2), c = 17.425(2) Å , β = 103.310(10)?, V = 2628.9(7) Å 3 and Z = 4 with 4053 observed unique reflections; R1 = 0.0314. The crystal structure of 3 consists of monomeric molecules with planar coordinated copper(I) centres (CuClNP). Homobimetallic 4 crystallizes in the monoclinic space group P21/n with a = 23.905(4), b = 10.874(3), c = 25.314(5), β = 99.130(10)?, V = 6497(2) /Aring; 3 and Z = 4 with 9021 observed unique reflections; R1 = 0.0480. In 4 one of two copper(I) centres possesses a distorted trigonal‐pyramidal environment, while the other one is almost square‐pyramidal coordinated. The Cu2Cl2 segment resembles to a building block which is set up by a contact ion pair consisting of Cu+ and [CuCl2] , respectively.  相似文献   

16.
The synthesis and structures of three new compounds are reported. [Mg2{PhP(Se,O)Se‐Se(O,Se)PPh}2(thf)7(H2O)3] ( 1 ), [Mg{PhP(Se,O)Se‐Se(O,Se)PPh}(thf)3(H2O)] ( 2 ), and [Mn{PhP(Se,O)Se‐Se(O,Se)PPh}(thf)3(H2O)] ( 3 ) were prepared by treatment of Woollins' reagent [PhP(Se)(μ‐Se)]2 with the corresponding hydrated metal acetates.  相似文献   

17.
The reaction of octamethylenetetrathiafulvalene (OMTTF) with excess CuBr2 in tetrahydrofurane/acetonitrile yields black (OMTTF)2[Cu4Br10] ( 1 ). The crystal structure determination shows the presence of OMTTF cations and tetranuclear bromidocuprate anions. The novel anion consists of four edge and corner sharing CuBr4 tetrahedra, which are connected to a ring. The assignment of the ionic charges and oxidation states for the copper atoms is supported by the magnetic properties. 1 is antiferromagnetic with TN ≈ 30 K. The magnetic moment reaches 2.54 B.M., which indicates, together with the Curie–Weiss constant of –35 K, a coupling of the paramagnetic spins over the whole temperature region. The ionic charges of the salt‐like compound 1 are therefore (OMTTF2+)2[(Cu+)2(Cu2+)2Br10]4–. The antiferromagnetism is explained by the coupling of the spins of two Cu2+ ions in the anion with an exchange constant of J = –18 cm–1. The CuI and CuII atoms are clearly distinguishable in the mixed valent anion. The OMTTF cation is not planar but exhibits an interplanar angle between the two central C3S2 ring moieties of 15.3°, which is in accordance to the dicationic oxidation state.  相似文献   

18.
The compounds [Hg2(μ—SePh)2(SePh)2(PPh3)2] ( I ) and [Hg3Br3(μ—SePh)3] · 2 DMSO ( II ) are formed by reactions of [Hg(SePh)2] with PPh3 in THF( I ) or with HgBr2 in DMSO ( II ) at room temperature. X—ray crystallography reveals that the cluster I consists of a distorted square built by each two Hg and Se atoms. The Hg atoms have almost tetrahedral co‐ordination environments formed by selenium atoms of two (μ‐SePh) ligands and Se and P atoms of terminal SePh and PPh3 ligands. The compound II is a six‐membered ring with alternating Hg and Se atoms in the chair conformation. Two DMSO molecules occupy positions below and above the [Hg3Se3] ring with the oxygen atoms directed to the centre of the ring.  相似文献   

19.
Single crystals of the hitherto unknown compound Hg2(OH)(NO3)·HgO were obtained unintentionally during hydrothermal phase formation experiments in the system Ag—Hg— As—O. Hg2(OH)(NO3)·HgO (orthorhombic, Pbca, Z = 8, a = 6.4352(8), b = 11.3609(14), c = 15.958(2) Å, 1693 structure factors, 83 parameters, R1[F2 > 2σ(F2)] = 0.0431) adopts a new structure type and is composed of two types of mercury‐oxygen zig‐zag‐chains running perpendicular to each other and of intermediate nitrate groups. One type of chains runs parallel [010] and consists of (Hg—Hg—OH) units with a typical Hg—Hg distance of 2.5143(10) Å for the mercury dumbbell, whereas the other type of chains runs parallel [100] and is made up of (O—Hg—O) units with short Hg—O distances of about 2.02Å. Both types of chains are concatenated by a common O atom with a slightly longer Hg—O distance of 2.25Å. The three‐dimensional assembly is completed by nitrate groups whose O atoms show Hg—O distances > 2.80Å. Weak hydrogen bonding between the OH group and one oxygen atom belonging to the nitrate group stabilizes this arrangement. Hg2(OH)(NO3)·HgO decomposes above 200 °C to HgO.  相似文献   

20.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号