首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntheses, Structures, Electrochemistry and Optical Properties of Alkyne‐Functionalized 1,3,2‐Diazaboroles and 1,3,2‐Diazaborolidenes The reaction of 2‐bromo‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) with lithiated tert‐butyl‐acetylene and lithiated phenylacetylene affords the 2‐alkynyl‐functionalized 1,3,2‐diazaboroles 4 and 5 as a thermolabile colorless oil ( 4 ) or a solid ( 5 ). Similarly 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1H‐1,3,2‐benzodiazaborole ( 6 ) was converted into the crystalline 2‐alkynyl‐benzo‐1,3,2‐diazaboroles 7 and 8 by treatment with LiC≡C–tBu or LiC≡CPh, respectively. 2‐Ethynyl‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 2 ) was metalated with tert‐butyl‐lithium and subsequently coupled with 2‐bromo‐1,3,‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) to afford bis(1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborol‐2‐yl)acetylene ( 9 ) as thermolabile colorless crystals. Analogously coupling of the lithiated species with 6 or with 2‐bromo‐1,3‐ditert‐butyl‐1,3,2‐diazaborolidine ( 11 ) gave the unsymmetrically substituted acetylenes 10 or 12 , respectively, as colorless solids. Compounds 4 , 5 , 7 – 10 and 12 are characterized by elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}, 13C{1H}‐NMR, MS). The molecular structures of 5 , 8 and 9 were elucidated by X‐ray diffraction analyses.  相似文献   

2.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

3.
Synthesis and Structure of Highly Functionalized 2, 3‐Dihydro‐1H‐1, 3, 2‐diazaboroles A series of differently substituted 2, 3‐dihydro‐1H‐1, 3, 2‐diazaboroles has been prepared by various methods. 1, 3‐Di‐tert‐butyl‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 7 ), 2‐isobutyl‐1, 3‐bis(1‐cyclohexylethyl)‐1H‐1, 3, 2‐diazaborole ( 8 ), 1, 3‐bis‐(1‐cyclohexylethyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 9 ) 1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2diazaborole ( 10 ) and 2‐bromo‐1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐1H‐1, 3, 2‐diazaborole ( 11 ) were formed by reaction of the corresponding 1, 4‐diazabutadienes with the boranes Me3SiCH2BBr2, iBuBBr2 and BBr3 followed by reduction of the resulting borolium salts [R1 = tBu, Me(cHex)CH, [Me(Et)Ph]C; R2 = Me3SiCH2, iBu, Br] with sodium amalgam. Treatment of 11 and 12 with silver cyanide afforded the 2‐cyano‐1, 3, 2‐diazaboroles 13 and 14 . An alternative route to compound 8 is based on the alkylation of 2‐bromo‐1, 3, 2‐diazaborole 12 with isobutyllithium. Equimolar amounts of 13 and isobutyllithium give rise to the formation of 15 . The new compounds were characterized by 1H‐, 13C‐, 11B‐NMR, IR and mass spectra. The molecular structures of 7 and meso ‐10 were confirmed by x‐ray structural analysis.  相似文献   

4.
Reaction of 2,5‐bis(dibromoboryl)thiophene ( 4 ) or 1,4‐bis(dibromoboryl)benzene ( 6 ) with two equivalents of N,N′‐dilithiated 2,3‐diaminopyridine ( 3 ) led to the generation of the pyridodiazaboroles 5 and 7 in which the two diazaborole rings are linked by 2,5‐thiophen‐diyl or 1,4‐phenylene units via the boron atom. The novel compounds were characterized by elemental analyses and spectroscopy (1H‐, 11B‐, 13C‐NMR, MS, and UV‐VIS). The molecular structure of 5 was elucidated by X‐ray diffraction. Cyclovoltammograms of 5 and 7 show two irreversible oxidation waves at 0.76 and 0.73 V, respectively vs Fc/Fc+. The novel compounds display intense blue luminescence with Stokes shifts of 76 and 74 nm and relative quantum yields of 39 and 43 % vs Coumarin 120 (Φ = 50 %).  相似文献   

5.
Reaction of either 9,10‐phenanthrenedione (phenanthrenequinone) or diphenylethanedione (benzil) with two equivalents of Li[N(SiMe3)2], followed by quenching of the reaction with excess ClSiMe3, produces the corresponding N,N′‐bis(trimethylsilyl)‐α‐diimines in high yields (85–95%). Subsequent dehalosilylation/ring‐closure reactions with SbCl3 and BiCl3 produce, in 90–95% yields, the first examples of 1,3,2‐diazaheterole ring compounds containing antimony or bismuth. These 2‐chloro‐1,3,2‐diazaheteroles can be further functionalized at the pnictogen by reaction with, for example, Li[N(SiMe3)2], to produce the corresponding 2‐bis(trimethylsilyl)amido‐1,3,2‐diazaheteroles. All of these new main group element–containing heterocycles have been characterized through 1H and 13C NMR, elemental analysis, and two of the diazastiboles have been structurally characterized by single‐crystal X‐ray analysis, confirming the ring structures. Both of these diazastiboles exist as associated dimers in the solid state; half of the dimer represents the asymmetric unit. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 423–429, 1999  相似文献   

6.
Synthesis and Molecular Structure of Chiral Bis(1,3,2‐dioxaphospholanes) Bisphosphites of the general type C2O2POCnOPO2C2 containing chiral building blocks both in the five‐membered C2O2P rings and in the OCnO bridge were prepared from 2‐chloro‐1,3,2‐dioxaphospholanes and chiral diols in the presence of a base. The molecular structure of compound 10 , which was obtained from 2‐chloro‐(4R,5R)‐4,5‐dimethyl‐1,3,2‐dioxaphospholane and (R)‐1,1′‐binaphthalin‐2,2′‐diol, was determined by X‐ray crystallography.  相似文献   

7.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

8.
The hitherto unreported 4‐oxo‐1,3,2‐benzoxazastibinines 2 have been synthesized by the cyclization of disodium salt of salicylanilide ( 1 ) with Ar3SbBr2 (Ar = Ph, p‐tolyl, or mesityl). These compounds have been characterized by elemental analyses, molecular weight determination, and by IR, far IR, 1H, and 13C NMR spectral studies. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:622–624, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10202  相似文献   

9.
3,3′‐[2,2′‐Oxy‐bis‐(4S‐methyl, 5R‐phenyl‐1,3,2‐oxazaborolidine)]ethylene ( 4a ) and 3,3′‐[2, 2′‐oxy‐(4S‐methyl‐5R‐phenyl‐1,3,2‐oxazaborolidine)‐ (1,3,2‐benzoxazaborolidine)]ethylene ( 4b ) were synthesized by the reaction of N,N′‐bis‐[(1R,2S)‐norephedrine]oxalyl ( 3a ) or N,N′‐[((1R,2S)‐norephedrine, o‐hydroxyphenylamine]oxalyl ( 3b ) with BH3‐THF. The molecular structure of these compounds was established by NMR and infrared spectroscopy. The molecular geometry for 4 was studied by means of theoretical methods, resulting in structures that were in total agreement with those obtained by spectroscopy data and X‐ray diffraction. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:513–519, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20151  相似文献   

10.
Self‐assembly of dibutyltin oxide with 3‐(1,3‐dioxo‐2,3‐dihydro‐1H‐phenalen‐2‐yl)benzoic acid (HL) produces (nBu)2SnL2 ( 1 ) when benzene is used as solvent, whereas the reaction generates {[(nBu)2SnO]2L}2 · C7H8 ( 2 ) when toluene is the reactive solvent. The novel organotin carboxylate (nBu)2SnL2 ( 1 ) was characterized by elemental analysis, as well as IR, 1H, 13C, and 119Sn NMR spectroscopy. Single crystal X‐ray study reveals that 1 is a dialkyltin carboxylate monomer possessing crystallographically imposed twofold symmetry. Ligand HL in 1 chelates with tin atom in bidentate coordination mode. The molecules of 1 build complicate 1D, 2D, and 3D structures via intermolecular hydrogen bonds, and π ··· π interactions can be found in the 3D architecture. The preliminary fluorescence activity and antitumor activity of the complex were also studied.  相似文献   

11.
Reaction of 3‐(2‐methoxyphenyl)‐2‐sulfanylpropenoic acid [H2(o‐mpspa)] with SnPh3OH in the presence of di‐isopropylamine resulted in the formation of the complex [HQ][SnPh3(o‐mpspa)] (where HQ = di‐isopropylammonium cation and o‐mpspa = 3‐(2‐methoxyphenyl)‐2‐sulfanylpropenoato), which was characterized by mass spectrometry and vibrational spectroscopy, as well as by 1H, 13C and 119Sn NMR spectroscopy. The single‐crystal X‐ray structural analysis of the new complex shows a trigonal‐bipyramidal coordination geometry around the Sn atom where o‐mpspa behaves as a bidentate chelating ligand. Dimeric units arise from the existence of N? H…O hydrogen bonds between the NH2 group of the di‐isopropylammonium cation and the oxygen atoms of the two neighbouring carboxylato groups. The bacteriostatic activity of the complex is also reported. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Several 2‐alkylcarbamato/thiocarbamato/aryloxy/trichloromethyl‐2,3‐dihydro‐5‐propoxy‐1H‐1,3,2‐benzodiazaphosphole 2‐oxides ( 4 and 6 ) were synthesised by reacting 4‐propoxy‐o‐phenylenediamine ( 1 ) with various N‐dichlorophosphinyl carbamates ( 3 ), aryl phosphorodichloridates ( 5a‐f ) and trichloromethyl phosphonic dichloride ( 5g ) in the presence of triethylamine at 45‐65 °C. Their ir, 1H, 13C, 31P nmr and mass spectral data are discussed. The compounds were screened for antifungal activity against Curvularia lunata and Aspergillus niger and for antibacterial activity against Bacillus subtilis and Escherichia coli. Most of these compounds exhibited moderate activity in the assays.  相似文献   

13.
The 2‐tert‐butyl, 2‐phenoxy, and 2‐diethylamino derivatives of 1,3‐bis(trimethylsilyl)‐1,3,2‐diazaphospha‐[3]ferrocenophane were prepared, and the molecular structure of the latter was determined by X‐ray diffraction. The phosphines could be oxidized by their slow reactions with sulfur or selenium, and the molecular structures of three sulfides and one selenide were determined. In contrast, the synthesis of oxides was less straightforward. All new compounds were characterized in solution by multinuclear magnetic resonance methods (1D and 2D 1H, 13C, 15N, 29Si, 31P, and 77Se NMR spectroscopy).  相似文献   

14.
Azaborolyl anions, the five‐membered BN heterocycles, have attracted a considerable attention due to their aromaticity and isoelectronic relationship with ubiquitous cyclopentadienyl ligands. Besides their syntheses and applications in the preparation of metal complexes, the other aspects of their chemistry have been virtually unexplored. Reduction of the azabutadienyl chelate boron dichloride [ArN?C(R)CH?C(R)]BCl2 ( 2 , Ar=2,6‐Me2C6H3, R=tBu) with two equivalents of potassium yielded the novel 2‐chloro‐azaborolyl anion [ArNC(R)CHC(R)BCl]K(thf) ( 3 ) as a stable product in good yield. Reaction of 3 with 1,3,4,5‐tetramethylimidazol‐2‐ylidene (NHC) yielded the first NHC–azaborole adduct with the elimination of KCl. The salt elimination reaction was also observed in the reactions with H2O and the organic azide ArN3, leading to the formation of an oxo‐bridged 3H‐1,2‐diazaborole and an intramolecular donor‐stabilized iminoborane, demonstrating that 3 is a source of the unexplored 1,2‐azaborole isosteric to cyclopentadienylidene.  相似文献   

15.
The addition of neutral (L = py, NEt3, NHEt2, NH2tBu) and anionic Lewis bases (X = OH, Br, N3, Me, NHBu , NHtBu, [FeCp(CO)2]) to aza‐closo‐dodecaboranes RNB11H11 ( 1 ) or to derivatives thereof with boron bound non‐hydrogen ligands yields nido‐clusters RNB11H11L or [RNB11H11X] or derivatives thereof, respectively, the non‐planar pentagonal aperture N—B4—B9—B8—B5 of which hosts a B8—B9 hydrogen bridge. The base is either bound to B8 ( 3 )or B4 ( 5 )or B2( 7 ). The structures of these adducts are concluded from 1H and 11B NMR including 2D‐NMR spectra, and in the case of MeNB11H11(NHEt2) (type 3 ) also by a crystal structure analysis. With two of the adducts MeNB11H11L (L = py, NHEt2), isomers of the type 3 , 5 , and 7 , and with two of the adducts, MeNB11H11(NH2tBu) and {MeNB11H11[FeCp(CO)2]}, isomers of the type 3 and 7 could be identified. The position of boron‐bound ligands during the addition of bases to 1 shows, that only vertices of the ortho‐belt of 1 are involved in the opening process. A mechanism is made plausible that starts by the attack of the base at B2 of 1 and opening of the N‐B2 bond, denoted as a [3c, 1c]‐collocation, to give 2 with an endo‐H atom, whose migration into an adjacent bridge position and opening of a second B—N bond, denoted as a [3c, 2c]‐translocation, gives 3 ; this isomer can be transformed into 7 by a sequence of [3c, 2c]‐translocations via the isomers 4 , 5 , and 6 . The chiral type 3 species MeNB11H11L with L = NHEt2, NH2tBu undergo a rapid enantiomerization, for whose mechanism the exchange of the bridging and the amine‐H atom has been made plausible.  相似文献   

16.
N‐(2,6‐Diisopropylphenyl)‐N′‐(2‐pyridylethyl)pivalamidine (Dipp‐N=C(tBu)‐N(H)‐C2H4‐Py) ( 1 ), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp‐N=C(tBu)‐N‐C2H4‐Py}] ( 6 ), [Mg{Dipp‐N=C(tBu)‐N‐C2H4‐Py}2] ( 3 ), and heteroleptic [{(Me3Si)2N}Ae{Dipp‐N=C(tBu)‐N‐C2H4‐Py}], with Ae being Ca ( 2 a ) and Sr ( 2 b ). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β‐metalation and an immediate deamidation reaction yielding [(thf)2Na{Dipp‐N=C(tBu)‐N(H)}] ( 4 a ) or [(thf)2K{Dipp‐N=C(tBu)‐N(H)}] ( 4 b ), respectively, as well as 2‐vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N‐(2,6‐diisopropylphenyl)pivalamidine (Dipp‐N=C(tBu)‐NH2) ( 5 ), or [(thf)4Ca{Dipp‐N=C(tBu)‐N(H)}2] ( 7 ), respectively. The reaction of AN(SiMe3)2 (A=Na, K) with less bulky formamidine Dipp‐N=C(H)‐N(H)‐C2H4‐Py ( 8 ) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp‐N=C(H)‐N‐C2H4‐Py}]2 ( 9 a ) or [(thf)K{Dipp‐N=C(H)‐N‐C2H4‐Py}]2 ( 9 b ), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β‐metalation/deamidation of N‐(2‐pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single‐crystal X‐ray structure analysis and are maintained in solution.  相似文献   

17.
Novel 2‐alkylcarbamato/thiocarbama‐to‐2,3‐dihydro‐5‐propylthio‐1H‐1,3,2‐benzodiazaphos‐phole 2‐oxides ( 4a–J ) were synthesized by cyclization of 4‐propylthio‐1,2‐phenylenediamine ( 3 ) with the corresponding dichlorophosphoryl carbamates/thiocarbamates ( 2a–J ) that were obtained by the addition of alcohols/thiols to isocyanatophosphoryl dichloride ( 1 ). The structures of the title compounds were confirmed by the 1H, 13C, 31P NMR, and mass spectral studies. Some of these products were found to possess significant antimicrobial activity. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:336–340, 2000  相似文献   

18.
Sequential treatment of 2‐C6H4Br(CHO) with LiC≡CR1 (R1=SiMe3, tBu), nBuLi, CuBr?SMe2 and HC≡CCHClR2 [R2=Ph, 4‐CF3Ph, 3‐CNPh, 4‐(MeO2C)Ph] at ?50 °C leads to formation of an intermediate carbanion (Z)‐1,2‐C6H4{CA(=O)C≡CBR1}{CH=CH(CH?)R2} ( 4 ). Low temperatures (?50 °C) favour attack at CB leading to kinetic formation of 6,8‐bicycles containing non‐classical C‐carbanion enolates ( 5 ). Higher temperatures (?10 °C to ambient) and electron‐deficient R2 favour retro σ‐bond C?C cleavage regenerating 4 , which subsequently closes on CA providing 6,6‐bicyclic alkoxides ( 6 ). Computational modelling (CBS‐QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H+ gave 1,2‐dihydronaphthalen‐1‐ols, or under dehydrating conditions, 2‐aryl‐1‐alkynylnaphthlenes. Enolates 5 react in situ with: H2O, D2O, I2, allylbromide, S2Me2, CO2 and lead to the expected C ‐E derivatives (E=H, D, I, allyl, SMe, CO2H) in 49–64 % yield directly from intermediate 5 . The parents (E=H; R1=SiMe3, tBu; R2=Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R1=SiMe) and oxime formation. The latter allows formation of 6,9‐bicyclics via Beckmann rearrangement. The 6,8‐ring iodides are suitable Suzuki precursors for Pd‐catalysed C?C coupling (81–87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71–95 %).  相似文献   

19.
The 7‐(2‐bromoethyl) derivatives, 2a and 2b , of 4‐chloro‐7H‐pyrrolo[2,3‐d]pyrimidine ( 1a ) and 4‐chloro‐7H‐pyrrolo[2,3‐d]pyrimidin‐2‐amine ( 1b ) were synthesized by nucleobase anion alkylation (NaH, DMF) and crystallized. X‐Ray analyses of both compounds were performed, and they revealed significantly different positioning of the side chain relative to the heterocyclic ring, depending on the substituent (H or NH2) at C(2).  相似文献   

20.
The low‐electron‐count cationic platinum complex [Pt(ItBu’)(ItBu)][BArF], 1 , interacts with primary and secondary silanes to form the corresponding σ‐SiH complexes. According to DFT calculations, the most stable coordination mode is the uncommon η1‐SiH. The reaction of 1 with Et2SiH2 leads to the X‐ray structurally characterized 14‐electron PtII species [Pt(SiEt2H)(ItBu)2][BArF], 2 , which is stabilized by an agostic interaction. Complexes 1 , 2 , and the hydride [Pt(H)(ItBu)2][BArF], 3 , catalyze the hydrosilation of CO2, leading to the exclusive formation of the corresponding silyl formates at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号